TY - JOUR AU - Betancor, J.J. AU - Ciaurri, O. AU - Martinez, T. AU - Perez, M. AU - Torrea, J.L. AU - Varona, J.L. KW - Fourier-Neumann expansions KW - Fractional integrals KW - Heat semigroup KW - Poisson semigroup KW - Riesz potentials T1 - Heat and Poisson semigroups for Fourier-Neumann expansions LA - eng PY - 2006 SP - 129 EP - 142 T2 - Semigroup Forum SN - 0037-1912 VL - 73 IS - 1 AB - Given α > -1, consider the second order differential operator in (0, ∞) Lα ≡ (x2d2/dx 2 + (2α + 3)xd/dx + x2 + (α + 1) 2)(f), which appears in the theory of Bessel functions. The purpose of this paper is to develop the corresponding harmonic analysis taking L α as the analogue to the classical Laplacian. Namely we study the boundedness properties of the heat and Poisson semigroups. These boundedness properties allow us to obtain some convergence results that can be used to solve the Cauchy problem for the corresponding heat and Poisson equations. © Springer 2006. DO - 10.1007/S00233-006-0611-8 UR - https://portalciencia.ull.es/documentos/5bbc69c7b750603269e8214c DP - Dialnet - Portal de la Investigación ER -