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Abstract

The notion of exterior space consists of a topological space together with a certain nonempty
family of open subsets that is thought of as a ‘system of open neighborhoods at infinity’. An exterior
map is a continuous map which is ‘continuous at infinity’. A strongly locally finite CW-complex
X, whose skeletons are provided with the family of the complements of compact subsets, can be
considered as an exterior spake Associated with a compact metric space we also consider the
open fundamental complé@FC(X) introduced by Lefschetz.

In this paper we use sequences of cycles converging to infinity to introduce ‘ordinary’ sequential
homology and cohomology theories in the category of exterior spaces. One of the interesting differ-
ences with respect to the ordinary theories of topological spaces is that the role of a point is played
by the exterior spacl of natural numbers with the discrete topology and the cofinite externology.

For a strongly locally finite CW-compleX, we see that the singular homologyXfis isomorphic
to H.Seq(Y; @80 7Z), the locally finite homology is isomorphic tH.seq(Y; ]_[80 7Z) and the end
homology is isomorphic ta#s°YX; [13° Z/ @§° 7). For cohomology one has that the compact
support cohomology is isomorphic ngC{Y; EBSO 7)), the singular cohomology is isomorphic to
Hged X [15° 2) and the end cohomology is isomorphickided X; [15° Z/ 5° Z).-

With respect to the Lefschetz fundamental complex, one has tha€¢loh homology of a
compact metric space can be found as a subgrOLﬁSSP(OFC(X); ‘R), the Steenrod homology

is isomorphic toH.Siql(OFC(X); ]‘[8" 7] EBSO Z) and theCech cohomology oKX is isomorphic to

Hge (OFC(X); [16° Z/ BF° -

Finally, one also has a Poincaré isomorphiHééC(ﬁ) = ang (M), whereM is a triangulable,
second countable, orientablemanifold. We remark that in both sides of the isomorphism we are
using sequential theories.2001 Elsevier Science B.V. All rights reserved.
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Introduction

The proper category of spaces and proper maps is a suitable framework for the study
of noncompact spaces. Nevertheless, one of the problems of this category is that it does
not have enough limits and colimits to develop the usual homotopy constructions such as
homotopy fibres and loop spaces. Recently, the authors together with Garcia Pinillos [8]
have given a solution using the notion of exterior space. The catdgofexterior spaces
is complete and cocomplete and contains the proper category as a full subcategory.

An exterior space(X, e C t), consists of a topological spac&, t) together with
a nonempty family of open subsets called externology which is closed by finite
intersections and such thatlif is an open subsetarid > E, E € ¢, thenU € ¢.

In this paper we consider analogues of the ordinary homology and cohomology theories
defined for the category of pairs of exterior spaces.

An ordinary homology theorfrom the category of pair&® to an Abelian categoryl
is a pair(H, 9), whereH consists of a family of functors

Hy E? - A, qeZ,
anda is a family of natural transformations
9=109,:Hy,(X,A) > H;_1(A), q€Z,

satisfying certain basic properties analogous to the Eilenberg—MacLane axioms of ordinary
homology. Acohomology theorfrom E®? to an Abelian category is just a homology
theory fromE @ to the opposite categopyt®.

These theories are called ordinary because for certain cellular spaces, called bi-
complexes, the homology groups are determined by the coefficient gfé??{N), where
N is the exterior space of nonnegative integers. A bi-complex consists of an exterior space
X together with a filtratiod = X_1 € Xo C X1 C --- C X, such thatX is the colimit of
the skeletong,, of the filtration. The:-skeletonX,, is obtained from thex{(— 1)-skeleton
X,—1 by attaching single-cells, D", where the externology agrees with the usual topol-
ogy and noncompaet-cells, D" XN, that have the usual topology and the cocompact ex-
ternology. We note that a strongly locally finite CW-compléxwhose skeletons have the
externology of the complements of compact subsets, has the structure of a bi-camplex
having, for each: > 0, its n-skeleton consisting of a finite number of cells. We remark
thatX,,, as a CW-complex, can have an infinite number of standard cells. The importance
of bi-complexes having finite-skeletons is that the homology is isomorphic to the corre-
sponding cellular homology which is determined by the coefficient group.

In this context, we think that the most important ordinary homology theory for exterior
spaces (which are first countable at infinity) is the theory introduced in this paper that we
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have calledsequential homologyt is called sequential because its definition is based on
sequences = (co, c1, c2, ...) Of singularrn-chains converging to infinity. An-cycle is a
sequence of singular-cycles and am-boundary a sequence of singulaboundaries, in
both cases converging to infinity. It is very interesting to remark that the Abelian group of
n-chains admits the structure of &module, wher&R is the ring of locally finite matrices
(see [6]), whose elements are matrices with integral endfigsvherei, j are nonnegative
integers, such that each file and column have a finite number of nonzero entries.

We have also introduced the homologies that we have calibdlar homologyand
closed tubular homologyn the first case, the-cycles are determined by a sequence of
(n —1)-cycles(zo, z1, 72, . . .) and a sequence afchainsc = (cg, c1, ¢2, .. .) in such a way
thatdco = zo0 — z1, dc1 =z1 — 22, .. .; thatis, we have an ‘infinite tube’ with bounday.
Takingn-cycles withzg = 0, we have ‘infinite closed tubes’ that give rise to closed tubular
homology.

In order to have sequential homology and cohomology with coefficients, it is convenient
to have chain complexes that are projective at each dimension. We solve this problem
using the structure of the closed model category of the category of chain complexes of
R-modules which are bounded below. This permits the use of cofibrant approximations to
define homology and (cohomology) with coefficients in a left (rigRBmodule. There
are threeR-modules that play an important role in this theo&pg’ Z, [[5°Z and

o Z/ g’ Z. The action of the ring on the left and on the right is given by matrix
multiplication.

We have noted that for a bi-complex with finiteskeletons, the sequential homology
with coefficients inBg’ Z is the singular homology; taking coefficients[ifg” Z, one has
the closed tubular homology; and usiffy” Z/ @g° Z, one has the tubular homology. In
this paper we also compare the new homologies and cohomologies for exterior spaces with
the standard homologies and cohomologies.

Let X be a locally finite CW-complex and consider the associated bi-coniplekere
the n-skeleton is provided with the cocompact externology and iwe take the colimit
externologyX = colimX,,.

We note the following relations for a strongly locally finite CW-compléx

(i) the singular homology oX is isomorphic to the sequential homologyXfwith

coefficients inPg° Z,

(i) the locally finite homology ofX is isomorphic to the closed tubular homology of
X and to the sequential homology with coefficient§ [g° Z,

(i) the end homology ofX is isomorphic to the tubular homology &f and to the
sequential homology with coefficients Jijg" Z/ g Z,

(iv) the compact support cohomology #&fis isomorphic to the sequential cohomol-
ogy of X with coefficients inpg° Z,

(v) the singular cohomology af is isomorphic to the sequential cohomologyXof
with coefficients in[ 5" Z,

(vi) the end cohomology ok is isomorphic to the sequential conomologyXofwith
coefficients in[[3° Z/ g Z.
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Associated with a compact-metric spac@ne also has the open fundamental complex
OFC(Y), introduced by Lefschetz [10] and also called the telescopic construction of
Milnor [12], and the corresponding exterior sp&EC(Y). We have then that

(vii) the Cech homology group df can be found as the subgroup of tRemodule of
sequential homology dDFC(Y) annihilated by the elemeid-Shof the ringR
of locally finite matrices,

(viii) the nth Steenrod homology group af is isomorphic to thgn + 1)th tubular
homology group ofOFC(Y) and to the(n + 1)th sequential homology group
of OFC(Y) with coefficients in[]g° Z/ @y Z, and thenth reduced Steenrod
homology group of ofY is isomorphic to thér + 1)th closed tubular homology
group of OFC(Y) and to the(n + 1)th sequential homology group &FC(Y)
with coefficients in[ 5" Z,

(ix) the Cech cohomology ot is isomorphic to the sequential cohomology group
of OFC(Y) with coefficients in [ Z/ @Y Z, and thenth reducedCech
cohomology ofY is isomorphic to then + 1)th sequential homology group of
OFC(Y) with coefficients inBg° Z.

Finally, we observe that for a triangulable, second countable, orientaflanifold M,
the ¢th sequential homology o/ is isomorphic to thex{ — ¢)th sequential cohomology
of M. We remark that we use only sequential homology and sequential cohomology.

1. Preliminaries
1.1. The category of exterior spaces

Let X andY be topological spaces. A continuous mapX — Y is said to beproperif
for every closed compact subgétof ¥, f~1(K) is a compact subset &f. The category of
spaces and proper maps will be denotedPbyl his category and the corresponding proper
homotopy category are very useful for the study of noncompact spaces. Nevertheless, one
has the problem that this category does not have enough limits and colimits, and so we
cannot develop the usual homotopy constructions such as loops, homotopy limits and
colimits, etc.

In [8] we gave a solution to this problem introducing the notion of exterior space. The
category of exterior spaces and maps is complete and cocomplete, and contains as a full
subcategory the category of spaces and proper maps. Furthermore, it has a closed simplicial
model category structure in the sense of Quillen [15], hence it establishes a nice framework
for the study of proper homotopy theory. We begin by recalling the notion of exterior space.

Roughly speaking, an exterior space is a topological spaseth a neighbourhood
system at infinity.

Definition 1.1. An exterior spacdor exterior topological spacé€X, ¢ C 1) consists of a
space(X, t) together with a nonempty collectianof open subsets, callezkternology
satisfying:
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(E1)if E1,EzeethenE1NEzx ¢,

(E2)if Ece,U ervandE C U thenU €e.

An open setE which is in¢ is said to be amxterior-opersubset or in short, asropen
subset. Amapf:(X,s C 1) — (X', ¢ C 1) is said to beexteriorif it is continuous and
fYE)ee, foral E e¢'.

The category of exterior spaces and maps will be denotel.by

Given an spacé€X, ), one can always consider thivial exterior space by taking
¢ = {X}, and thetotal exterior space if one takes= t. In this paper, an important role
will be played by the family:&, of the complements of closed-compact subsets.of

There is a full embedding: P — E. It carries a spac& to the exterior spac&,
which is provided with the topology oX andgé‘c. A proper mapf: X — Y is carried to
the exterior magf, : X, — Y, given by f, = f.

Definition 1.2. Let (X, e C ) be an exterior space. Aexterior baseon (X, e C t) is a
collection ofe-open subsetg C ¢, such that for every-open subsek there exists3 € 8
such thatB C E. If an exterior spac& has a countable exterior bage= {E,}7° , then
we say thatX is first countable at infinity

Note that for these exterior spaces we can suppose, without loss of generality, that
X=EogDE1DE>2D---DE; D---.

Notice that everyo-compact space provided witbﬁ‘c is first countable at infinity.
An exterior base is very useful for checking when a continuous hagX, ¢ C ) —
(X', ¢’ C T') between exterior spaces is exterior. It is sufficient to see thatB) € ¢ for
all B € B/, wherep’ is a given exterior base.

Definition 1.3. Let X be an exterior space anfdbe a topological space. We consider on
X x Y the product topology and the distinguished open subBetE X x Y, such that for
eachy e Y there existd/, € ty, y € Uy andE, € ex suchthatt, x U, C E. This exterior
space will be denoted hy x Y.

This construction gives a functd x Top — E, whereTop denotes the category of
topological spaces. Whenis a compact space, we can prove thds ane-open subset if
and only if it is an open subset and there exts ¢y such thatG x Y C E. Furthermore,
if Y is a compact space ang = &, theneyzy coincides with the complements of all
closed-compact subsets ¥fx Y.

We will consider the selN of nonnegative integers with the discrete topology and the
cofinite externology.

Let S"~1, D" be the 4 — 1)-sphere and the-disc, respectively. We will let

" 1=Nxs"1 forn>1

and let&—1 = ¢. Similarly ®” = Nx D", n > 0.
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Recall that a CWeomplexis a spaceX with a filtration
h=X_1CXoCX1C---CX

such thatX is the colimit of the filtration and for > 0, X,, is obtained fromX,,_; by a
push-out inTop of the form

n—1 ]_[aeAn Pa
I_[oteAn Sa > Xn—l

]_[aeA,, Dy ————— Xy

¢ ]_[ozeAn 1//"‘
The notion ofN-complex was introduced in [8]. It can be constructed from a discrete space
provided with the complements of its finite subsets by consecutively attaching noncompact
cells.
Definition 1.4. An N-complexconsists of an exterior spagéewith a filtration
=X_1CXoCX1C---CX

such thatX is the colimit of the filtration and for > 0, X,, is obtained fromX,,_1 by a
push-outinE of the form

n_l ]—[o(EAn (2
]—[aEA,, 60{ > X1
\L in
es O X
aeA, ~a U%An Vo n

One can check that a locally finite CW-compl&xwith finite dimensiond and, for
each O< k < d, either having nd-cells or having a countably infinite numberfotcells,
provided withs X, admits the structure of a finit§-complex. IfX,, is obtained fromX,,_1
by a push-out inE of the form

(]_[O(EAn wﬁ)]—[(]_[ﬂeB,, W/S)

(Uuen, 84 Y1 pes, S50 X1

| ]

on D"
(Ugea, a)]-[(]_[/SEB,, ) Woon, Ve[ LLyes, V) Xy

where in Sg‘l, Dg we consider their topologies as externologies, we obtain the notion
of bi-complex It is not difficult to see that a countable locally finite, finite-dimensional
CW-complex with externologyX. admits the structure of a finite bi-complex.

Definition 1.5. The subsets), (D)), wﬁ(Dg) are called the:-dimensionalN-cell and
n-dimensional simple celtespectivelyp, andgg are called thattaching maps
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1.2. Homology and cohomology of CW-complexes

In this paper we deal with several homologies and cohomologies for suitable CW-com-
plexes as well as their corresponding cellular homologies and cohomologies.

1.2.1. Singular homology and cohomology

If X is aspace, les?"(X) denote the singular chain complex aH@"™(X) = H, (S.(X))
the singular homology oX. The cellular chain complex of a CW-compl&x C3"(X), is
given by

C3"(X) = Hy"™ (X, Xn-1) =P Z,
Ay

whereA, is the set ofi-cells of X and the boundary homomorphism is the composite

. a . jni .
H(X,,, Xp—1) —> HS" (X,-1) 25 HS™ (X,_1, Xu—2),

where o denotes the boundary operator of the topological p&iy, X,—1) and j,_1

is the homomorphism induced by the inclusigX,,_1, ¥) C (X, -1, X,—2). As is well
known, the singular homology groups of a CW-complex are isomorphic to its cellular
homology groups. Theth singular conomology groufig,(X) with integral coefficients is
given by the cohomology of the singular cochain comptEX Sz, (X)), whereSg,,(X) =
Hom(S,fi”(X), 7). If X has the structure of a CW-complex, then the singular cohomology
of X is isomorphic to the cohomology of its cellular cochain complex

Cain(X) = Hgin(Xn, Xn-1) =[],, Z

1.2.2. Locally finite homology and compact support cohomology

A locally finite singularn-chain of a spaceX is a product[ [, nqyo, With n, € Z
and o, : A" — X singularn-simplexes, such that for eache X there exists an open
neighbourhood/ of x such thatfa | U N0, (A) # @, ny # 0} is finite. The locally finite
singular chain comple$'.f (X) is the chain complex withs“,Lf (X) the Abelian group of
locally finite singulam-chains and the usual boundary homomorphisms. The locally finite
homology ofX is denoted b)H,Lf (X).

A proper closed mayg : X — Y between IocaIIY compact Hausdorff spaces induces, for
each integer, a homomorphisnf, : H,'Zf (X) —> an (Y).

The locally finite cellular chain complex of a strongly locally finite CW-compléx
cf (x), is defined by

If If ~
Ch (X)=H, (X, Xp-1) = HA,,ZV
and the boundary homomorphisl,lﬁ is the composite
If 3l n—1 o If
Hy (Xn, Xn-1) — H,_(Xy-1) ™= H,_{(Xp_1. Xn_2).

The chain complexes'.f (X) andC'.f (X) are homology equivalent whexi is strongly
locally finite; that is, if X is the union of a countable, locally finite collection of finite
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subcomplexes. Note that every countable, locally finite, finite-dimensional CW-complex is
a strongly locally finite CW-complex.

A g-cochainc: S, (X) — Z hascompact suppoif there is compact subsét C X such
that if ag-simplexo is contained inX \ K, thenc(o) = 0. The complexSgy(X) of compact
support cochains gives ti¢h compact support cohomology grofg(X) = H" (Sg(X)).

The corresponding cellular cochain complex of a strongly locally finite CW-conpjex
Ce(X) is given by

Ces(X) = Hi(X,, Xu-1) =P Z.
Ap

The cochain complexef(X) andC2,(X) are homology equivalent whenis strongly
locally finite. For more details and properties of these theories, we refer the reader to [9].

1.2.3. Homology and cohomology at infinity

Thesingular chain complex atinfinityf a spaceX is given byS>° (X) = st (X)/S8SN(X)
and the correspondingh singular homology group at infinity is denoted By (X).

If X is a strongly locally finite CW-complex, treellular chain complex at infinitgf X
is given by

CX(X) = H®(X,, Xp1) = HZ/@Z.
Ay Ay
When X is a strongly locally finite CW-complex, we have that the singular locally finite
homology is given by the cellular chain complex at infinity.

The singular cochain complex at infinitpyf a spaceX is given by S% (X) =
Sein(X)/S8es(X) and the correspondingth singular cohomology group at infinity is
denoted byHZ (X).

If X is a strongly locally finite CW-complex, theellular cochain complex at infinitgf
X is given by

Ch(X) = HL (X, Xp-) =] [ 2/ P 2.
Ay Ay

When X is a strongly locally finite CW-complex, we have that the compact support
cohomology is isomorphic to the cohomology of the cellular cochain complex at infinity.
We also refer to these homology and cohomology groups as the end homology and end
cohomology, see [9].

1.2.4. Cech homology and cohomology

If X is acompact metric space, lét be a sequence of finite open coversxo$uch that
U; 11 refiness; and lim_ o supdiamU)/U € U;} = 0.

TheCech homology ofX is given by the inverse limitf,, (X) = Iim{H,f"‘(Ni)}, where
N; denotes thef(ech) nerve of/;. TheCech cohomology is defined to be the direct limit
H"(X) = lim{HZ (N;)}. For a formulation ofCech homology and cohomology groups
based on more general resolutions we refer the reader to [11].
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1.2.5. Steenrod homology

Let X be a compact metric space.régular mapof a simplicial complexk in X is a
function f defined over the vertices & with values inX, such that, for alk > 0, all but
finitely many simplexes have their vertices imaging onto sets of diameterA regular
n-chainof X is a triple(K, f,c"), whereK is a simplicial complexf is a regular map
of K in X ando” is a locally finiten-chain ofK . If o” is ann-cycle, then(K, f,c") is a
regularn-cycle. Two regulan-cycles(K1, f1,07), (K2, f2, 05) arehomologousf there
exists an(n 4+ 1)-chain(K, f, 0" 1) such thatk; and K> are closed subcomplexes &t
f agrees withf1 on K1 and f> on K» andd(o"*1) = oy — o, . This construction was
introduced by Steenrod [16] and the corresponding reduced homology of a compact metric
spaceX will be denoted byﬁ,?‘(X). For more properties of Steenrod homology we refer
the readerto [7,12,2,4].

2. Axiomsof homology theory for exterior spaces. Cellular homology

In this section we analyze a family of axioms for a homology theory on the category
E® of exterior pairs and maps and the induced cellular homology for exterior spaces
which admit the structure of a bi-complex.

By anexterior pair(X, A) we mean an exterior spadeand a subspacé C X provided
with €4, which consists of those open subsets of the fArmA, whereE € ex. In the obvi-
ous way, we have the notion of an exterior nyap X, A) — (Y, B) between exterior pairs.

Given two exterior mapgy, f1: (X, A) — (Y, B), fo and f1 are said to bénomotopic
if there exists an exterior map: (X x1, AxI) — (Y, B) such thath(x, 0) = fo(x) and
h(x,1)= f1(x), forallx € X.

Definition 2.1. An ordinary homology theory off @ with ‘values’ in an Abelian category
A consists of a collectioth = (H, 9) whereH is a sequence of functo#d, : E@ 5 A,
indexed by the set of all integers, adds a sequence of natural transformatidis=
0:H,(X,A) — H,;_1(A), called boundary operators, such tifatatisfies the following
axioms:

(Al) (Exactness axiojrLet (X, A) be an exterior pairand: A — X, j: X — (X, A)
denote the inclusion maps. Then, the sequence

o Hy(A) S Hy (0 B Hy (X, A) D Hy_1A) > -
is exact, wheré,, j, denoteH, (i) andH,(j), respectively.

(A2) (Homotopy invariance axiof f, g: (X, A) — (¥, B) are homotopic exterior
maps, thery, = g.: H,(X, A) - H, (Y, B), for every integey.

(A3) (Excision axiorh Let X be an exterior space which is first countable at infinity
andU be an open subset &f such thatCl(U) c Int(A), whereA is an exterior
subspace oK. Then, the inclusion map: (X — U, A — U) — (X, A) induces an
isomorphismi,: H,(X —U,A—-U) — H,(X, A), for every integey;.

(A4) (Dimension axiomH, (N) = 0 for every integeg # 0.

The objectG = Hp(N) is called thecoefficient objectf the homology theory).
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Definition 2.2. A cohomology theory orE® with values in an Abelian category is a
homology theory with values in the opposite categdfy .

Itis easy to check that for each exterior p@fr, A), whereX is an exterior space which
is first countable at infinity and is the disjoint union ofi open subspaceé;, Xo, ..., X,
the inclusion magpy : (X, Ax) — (X, A), with Ay = A N Xy, induces a monomorphism
(i) Hy (X, Ap) = Hy(X, A),fork =1, 2,...,n, and every integeg. Furthermore, the
homomorphism

n n
¢=> () D Hy(Xe. A) — Hy(X. A)
k=1 k=1

is an isomorphism for every integer

As a consequence, we have that, in general, it is not possible to find a homology theory
on E@ associated with every objed. The isomorphisnNLIN = N gives rise to an
induced isomorphisnG & G = G, and therefore the coefficient objeGt has this nice
property. Several examples of ordinary homology theorie€&? will be developed in
next section.

Throughout this section it is assumed tli§at= (H, 9) is an arbitrarily given ordinary
homology theory orE @,

If P denotes the singleton set, we will consider the exterior SpAC&, P} C {4, P}).
The following result establishes that the homologyPofs determined by the homology
of N.

Proposition 2.3. Let sh:N — N be the ‘shift operator’ given by sk) = k + 1, for all
k e N. Then

H,(P) =

{ coker(shy, : Ho(N) — Ho(N)) if n=0,
otherwise.

Proof. We consider the homology sequence®™f N(1)), whereN(1) = {k e N: k > 1}.
Taking into account thagh : N — N(1), defined bysh (k) = k + 1, is an isomorphism in
E andi(sh) = sh, wherei denotes the inclusioN(1) C N, we obtain an exact sequence

0— Hy(N.N(1) - HoN) =% Ho(N) — Ho(N, N(1)) — 0.

Sincethe map:N — N givenbyr(k) =k —1if k > 1 andr(0) = O satisfies thatsh=id,
then(sh), is a monomorphism, s (N, N(1)) = 0. Note that by using the excision axiom
we have thatd, (N, N(1)) = H,(P). We conclude thatHy(P) = cokel(sh).). The rest of
the proof is straightforward. O

We introduce what we call th&¥-reduced homologgssociated witl$y on the category
Fg whose objects are commutative triangledtirof the form
id

NP

X

N N
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denoted by(ix, X, rx). A morphism(ix, X, rx) — (iy, Y, ry) consists of an exterior map
f:X — Y such thatfix =iy andry f = rx. Observe tha®”" can be considered as an
object infg, takingign (k) = (k, ) andrgn (k, x) =k, for all k e N andx € §". Herex
denotes the base point 8, (1,0,...,0).

Another special object &, with iy = ry = idy.

Definition 2.4. Let (ix, X, rx) be an object OES. We define itgyth N-reduced homology
as the kernel

Hy(X) =ker((rx)« : Hy(X) — Hy(N)).

Obviously this defines a functcﬁg — A for every integey . TheN-reduced homology
has nice properties, such as the existence of an exact sequenc®eafatieced homology

associated with an inclusioA C X in Fg and the homotopy invariance. Furthermore,
there is an isomorphisiH, (X) = H,(N) & ﬁq(X), for every integey.

Using analogous techniques to those considered in singular homology theory, it is not
difficult to see tharﬁq(G”) is G if ¢ =n and 0 ifg # n. Hence we have that

0 ifn#£qg#0,
H,(6")=1{G ifnstg=00rn=¢q #0,
G®G ifn=qg=0.

On the other hand, in order to computg, (S*), where S" has the topology as the
collection of e-open subsets, we introduce tifereduced homology associated with
on the categoryEg of exterior spaces over and underWe define

H(X) =Ker((rx)s 2 Hy(X) — Hy(P))

for each exterior space over and undeand integeg . By similar arguments we have that
Hy($")is0ifn#g#0,G ifn#g=00rn=¢q#0, andG' ® G’ if n =q =0, where
G’ denotesHy(P).

Definition 2.5. By afinite bi-complex paiwve mean an exterior paiX, A), whereX is a
bi-complex with a finite number of cells amtlis a subcomplex oX.

Let (X, A) be a finite bi-complex pair such that is obtained fromA by attaching
n-cells

Uy oD I e 90

(L5_s (AT PR )

k m
iz1 O i—k+1 D!
(Uiza PO PO 0 S v

Using the excision property, one can prove that

(Wi)s: Hy (D7, 6" — Hy(X, ) (1<i <h)
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and

(Wi)w: Hg(D}', SP7Y) — Hy(X, A)  (k+1<i<m)

2]

are monomorphisms and the homomorphism
m
—_1\k —1\m—k
h=> i) Hy(D}. &N @ Hy(D}, S} )" " — Hy(X, A)
i=1

is an isomorphism, where the exponents denote the number of copies of the corresponding
object. Since we have thai, (D", 6" YisGif g=nand0ifg #n, andH, (D!, S;"l)
is G’ if ¢ =n and 0 ifg # n, we have as a consequence that
{ Gk (GHY"* ifg=n,
otherwise.
By the relative dimensiorof a finite bi-complex pairX, A), dim(X, A), we mean the
smallest integen satisfyingX — A C X,,. In caseX — A = ¢ we set diniX, A) = —1.
By using inductive arguments, we can prove without difficulty that if @&mA) = n, then

H, (X, A) =0 for everyg < 0 andq > n. In particular, given a finite bi-compleX, then
H,(X,)=0forallg > n.

Hy(X,A) =

Definition 2.6. Thecellular chain complexC, (X) of a bi-complexX, is defined to be
Cn (X) = Hn(Xm Xn—l),

with boundary homomorphisa, the composite

bl Jn—
Hy (X, Xp_1) — Hy 1(Xn-1) 25 Hy 1(Xp_1, Xo—2),

whered denotes the boundary operator of the exterior p&if, X,,—1) and j,—1 is the
homomorphism induced by the inclusiok, 1, ¥) C (X,—1, X,—2).

Thenth cellular homologyof X, H,fe'(X), is thenth homology of this chain complex.
We are going to prove that the cellular homology and the homology coincide on finite bi-
complexes. In fact, we shall give an algorithm which allows us to compute the homology
for this distinguished class of exterior spaces.

We consider the diagram

kn Jn
Hy(X) <— Hy(X,) — Hy(Xp, X,—1),

wherek, andj, are the homomorphisms induced by the respective inclusion maps.

Theorem 2.7. Let X be a finite bi-complex. Then
(a) k, is an epimorphism,
(b) j, is a monomorphism, and
(©) IM(jin) = ker(d,), ker(k,) = j, H(im(dy)).
Henced, = juk;1: Hy(X) — ane'(X) is an isomorphism.
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Proof. Consider the following part of the exact homology sequence associated to the
exterior pair(X,, X,—1):

in d
0 — Hy(Xn) 2> Hy(Xp, Xp-1) —> Hy_1(Xp_1) "
. k
5 Hy_1(X,) — 0.
If g #nandg #n — 1, thenH,11(X,, Xy—1) =0=Hy(X,, Xn-1), SOi,: Hy(Xpn_1) —
H,(X,) is an isomorphism.
Suppose that dink) < m andn < m. If ¢ < m, we have the following commutative
diagram:

Hy(Xge1) —2% Hy (Xg12) 22 Hy (X43) 25 B (X)
k J/kqiM
Hy(X)

It follows thatk, : H;(Xo) — H,(X) is an isomorphism, for alk > ¢. Hence,k,41 :
Hy(X441) = Hy(X) is an isomorphism. Frortx) we deduce thaf, is a monomorphism
andi, an epimorphism. Sinck,i, = k,—1 andk,, is an isomorphism, it follows that,_1
is an epimorphism. Furthermore, kier—1) = ker(i,), so the following sequence is exact:

jn d kn—
0— Hn(Xn) ]—> Hn(Xna Xn—l) — Hn—l(Xn—l) —i Hn—l(X) — 0.

Sinced,, = j,—10 and j,_1 is a monomorphism then we have that(ldgb = kernd) =
im(j,). On the other hand kék,—1) =im(d) = j, - 1(|m(]n 10)) = j, - (|m(d ). O

One can prove that the same result holds for finite bi-complex p&Aird), using the
chain complexC, (X, A) = H,(K,,, K,—1), whereK,, = X,, U A. On the other hand, if
H, satisfies the condition tha¥, (X) = colimH,(X,), then the theorem also holds for
bi-complexes with a finite number of cells in each dimension.

Finally, note that finiteN-complexes and finite CW-complexes embeddeH iare finite
bi-complexes.

Remark 2.8. Note that we have similar results for cohomology theories with the cochain
complexC"(X) = H"(K,, K,—-1).

3. Examples of homology theorieson E®?
3.1. Sequential homology

By a locally finite matrixwe mean an infinite integer matrix with rows and columns
indexed by elements &f such that each row and each column contains only a finite number
of nonzero entries (see [6]). We will denote the ring of locally finite matriceRbyVe
can also consideR as an endomorphism ring in the category of external Abelian groups.
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Definition 3.1. Let G be an Abelian group. Aaxternologyon G is a nonempty collection
¢ of subgroups oG satisfying:

(E1)if E1, ExecthenE1NEzx ¢,

(E2)if E€e,U <G andE < U thenU €.

An external Abelian grougG, ¢) consists of an Abelian groug together with an
externologye. A subgroupE in ¢ is said to be aexterior subgroupr e-subgroup

A homomorphismf : (G, &) — (G', ¢') is said to beexternalif f~1(E) e ¢ for all
Eec¢.

The category of external Abelian groups and homomorphisms will be denoteéby
One can check th&Ab is an additive complete and cocomplete category.

Definition 3.2. Given an external Abelian grou, ¢), anexternal basés a collection of
e-subgroupsg, such that for every-subgroupE there existsB € g such thatB < E.

We will use the Abelian grouy = @y’ Z provided with the externology consisting
of those subgroup& < 3 such that there existse N such that;°Z < E. Hence
{7 Z}2,, constitutes an external base @y;° Z.

The elementgg = (1,0,...), e1 = (0,1,0,...),... clearly generate3. Taking into
accountthat an external homomorphign — G is determined by the imagés(e;)}7°,
one can prove that Hog, (3, 3), with the obvious sum and the composition, dadire
isomorphic as rings.

Let X be an exterior space. We consider the positive chain complex of external Abelian
groups, S$"(X), where S3"(X) is the Abelian group of all singular-chains onX,
provided with the externology whose base{jgi“(E): E is ane-open subset ok'}. One
can check that the singular boundary homomorphﬂ,%‘ﬁ”l S,f"‘(X) — Sjifl(X) is external,
for eachn > 0.

Definition 3.3. Let X be an exterior space. We define tequential chain complexf
R-modulesS;¥4X), by

$i°4(X) = Home-ap (3. SS"(X)),  di*9= (d3"),.

Given (X, A) an exterior pair, the chain complest®Y(X, A) is defined byss®4Xx)/
5:°94A). Thenth homologyR-module of this chain complex is denoted B4 X, A),
and it will be called the:th sequential homologgf (X, A). This construction clearly de-
fines, for each integer, a functorH,°%: E®@ — R-Mod, whereR-Mod denotes the cat-
egory ofR-modules and homomorphisms®fmodules. The connecting homomorphism
of the exact sequence

0— S3°9A) — S3%4X) — $3°9x,A) =0

seq

gives rise to the boundary operatSf%: H, (X, A) — H: 1(A).

Theorem 3.4. ) = (H%®% 9%¢% is a homology theory ot @.
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Proof. Axiom (Al) is immediately satisfied. In order to prove axiom (A2), et (X x I,
AXxI)— (Y, B) be a homotopy betweefiandg. We consider

rXA:ssnx Ay — §SN (X X1, AXT)
the prism operator [5] and
Ly =SS0 (F)IXA SS0(X, A) — S50, (Y, B).

It is straightforward to see that, is an external homomorphism. Furthermofe=
{(Ln)s: $i7(X, A) = S53(Y, B)}S 4 is @ chain homotopy. : Se°4 ) =~ 5e°4g).
Note that

Home-an (3, SSM(X, A)) = S384X, A).

Now, let (X, A) be an exterior pair, wher& is an exterior space first countable at
infinity, and supposé&/ is an open subset of such thaClx (U) C Intx(A). We consider
X=FEyDE1DE2D---DE, D--- an exterior base foX. Taking into account that
Clg, (ExNU) C Intg, (Ex N A), for eachk we have that the inclusion maps

ig, (Ex — (ExNU), (ExNA) — (ExNU)) — (Ex, ExN A)
induce isomorphisms on the singular homology groups
(5w HO(Ex — (Ex NU), (Ex N A) — (Ex NU)) — HIY(Ey, Ex N A).

{SSN(E)2, and {SS(Ex, Ex N A)}2°, are external bases faiS"(X) and S3"(X, A),
respectively, so if we takfr] € H; 4 X, A) represented by the external homomorphism
0.3 — S,f"‘(X, A), there is an increasing monotone sequefie@)}°, C N such that
for eachl e N andk > ¢(l), o(e) € S,fi”(E;, ErNA). If o) <k < ¢( + 1), then
[0 (ex)] € HS"(E;, E; N A) becausdds™), (o) = 0 impliesdS"(o (ex)) = 0. Since(ig, )«
is an isomorphism, we také (ex)] € H,f"‘(E, —(E;NU), (E;NA)— (E;NU)) verifying
(ig)«([0(ex)]) = [o(ex)]. It is easy to check that this argument gives us an element
[6] € H*{X — U, A — U) such thati.([6]) = [¢], wherei denotes the inclusion
(X —U,A—U) C (X, A). HenceH,*Yi) = i, is an epimorphism. By similar arguments
ix IS a monomorphism, so (A3) is satisfied.

In order to prove axiom (A4) we will see that

R, ifn=0,

HSE(] N :{
() 0, otherwise.

Since(N(i)}72, is an exterior base fa¥, with N(i) = {k € N: k > i}. Then{S,fi”(I\I(i))};?i0

is an external base fa$,(N), n > 0. Then, using techniques similar to those used to
prove (A3) and taking into account thAIS"(N(i)) = 0 if n # 0, we have thatf;*{(N) =

0 whenn # 0. Now we analyze the casH,° (N). Sincedi = 0, then Hy N) =
Home-ab (3, S§"(N), but SF"(N) = 3 s0 Hy“{N) = Home-an(3, 3) =R. O

Singular homology and sequential homology are related to each other.
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Proposition 3.5. There are natural isomorphisms, whet® is in the category of
topological spaces

(@) Hy X)) =[P HS"(X), if ex = {X}, and

(b) Hy*X) =P HI"(X), if ¢ is the topology oK.

Proof. (a) In this case the externology 6fi"(X) is {SS"(X)}. Hence
Home-ab(3. S$(X)) = Homap(3, S5"(X))

o o0
= [ [Homap (2. S5"(X)) = [ ss™(x).
0 0
ThereforeH; 4 Xx) = [13° HS"(X).

(b) Since{d} is an exterior base fok, then{0} is a external base foS,f‘”(X). For
each external homomorphism 3 — S, (X), there is a nonnegative integey such that
ar =a(ex) =0 forall k > k,. ThenS, 4 X) = @ S$"(X) with d, 7= P dS". O

As a consequence, for each compact spacee have that
o0
(X =P HS"(X).
0

Remark 3.6. The proper homotopy groups introduced by Brown [1] have global versions,
see [8], and one can consider Hurewicz maps from ‘global Brown homotopy groups’ to
sequential homology groups.

3.2. Tubular homology

Let X be an exterior space. The tubular chain compleXoSﬁ“b(X), is defined by the
following chain complex of Abelian groups:

SEP(X) = 5,21 () @ $;°4X);
dya, x) = (d, 2 (@), —d, 2] (x) + a — aSh,

whereSh denotes the locally finite matrix defined By(ex) = ex+1, k=0,1,....

For exterior mapsf : X — ¥, SY°(f) = $2°9(f) @ Sp° (f). Thenth tubular homol-
ogy groupof X is Hn(SEUb(X)). It will be denoted byH,ﬁ“b(X). For exterior pairg X, A)
we considerSi“®(X, A) = $°°1(X, A) @ S,°4X, A) with the obvious boundary homo-
morphisms, andd“P(X, A) = H,(SMP(X, A)). It is easy to check thasP(X, A) =
SHP(X)/SMP(A).

Clearly this defines a functdf,ﬁ“b: E® — Abfor eachn. By similar arguments to those
used forH¢9 one can prove without difficulty axioms (A1), (A2) and (A3). In order to
see axiom (A4) we need some previous results. First we will see a relation between tubular
homology and singular homology in terms of the inverse limit and its first derived functor
associated with certain inverse systems of Abelian groups. Recall that if

Po p1 p2
Ag<— A1 <— Ap <—---
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is an inverse system of Abelian groups and/if[ |72y A; — []i2o A is the homomor-
phism defined byi(ao, a1, az, ...) = (ap — po(a1), a1 — pi(az), a2 — p2(a3z),...), then
ker(d) = lim{A;} and cokefd) = lim*{A;}. Two important properties of the derived func-
tor lim?, see [3,9], are the following:

— If each projectiorp; is an epimorphism, then litgA;} = 0.

— Every short exact sequence of inverse systems,

0— {Ai} — {Bi} — {Ci} — 0,
gives rise to an exact sequence of Abelian groups

0 — Ilim{A;} — lim{B;} — lim{C;}
—> limY{A;} — lim%{B;} — lim*{C;} — O.

If X is an exterior space which is first countable at infinity &hek Eg D E1 D E2 D
---D E, D --- afixed countable exterior base, the inclusidns C E; give rise to the
induced homomorphisrp; : HS™(Ei11) — HS"(E;), ¢ > 0 and the inverse system of
Abelian groups{H;'”(E,-)}.

Proposition 3.7. There is a short exact sequence
0— imY{HS(E)} 2> HU(X) L lim{H2" (E)} — O.

Proof. « is defined as follows. We consider: []:2, HqS‘”(E,-) — H;Ub(X) defined by
e({[xi1}720) = [(0,x)], wherex:3 — S,(X) is given byx(e;) = x;. Sincepd = 0 we
have thatp induces a homomorphism: Iiml{HqSi”(E,-)} — H;“b(X) such thater = ¢,
wherer denotes the canonical projection.

On the other hand, for each-cycle of Sﬁ“b(X), (a, x), there exists a monotone
increasing sequende;}°, C N, with ng = 0 such that(a, x;) € Ssifl(Ei) @ Sji”(Ei),
forall k > n;; hereay andx; denoteu(e;) andx (ex), respectively. We defing([(a, x)]) =
{lan 1372, € im{HS", ().

The facts thatr is a monomorphisnmg an epimorphism and ife) = ker(8) are routine
and are left as an exercisen

Remark 3.8. There is a similar exact sequence for the relative cag&.,If) is an exterior
pairandX = EoD> E1 D E2D---D E, D --- afixed countable exterior base &f there
exists a short exact sequence:

0 — lim*HE;, E;n A} -5 HMP(X, A)
L im (B (E;, E; 0 A)) — 0

for every integey.
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As a consequence of this proposition we can compute the tubular homoldgycoh-
sidering the exterior bag®N(i)}?°,, whereN(i) = {k € N: k > i}. The details are left to
the reader.

Corollary 3.9.

q

0, otherwise.

Proposition 3.10. Let X be a topological space provided with the externology of all open
subsets. TheRM2(X) =0, for all g.

Proof. In this case,

o0 o0
SHe(X) = (@ S,?‘l‘l(X)> ® (@ S,f‘"(X))
0 0
with boundary homomorphism

d¥®({ai}. xi)) = (A5 (@)} A=dS" i) + a; — aiga)).

Itis not difficult to see that eacp-cycle in SMP(X) is ag-boundary. O

In particular, if X is a compact space (for example, the singleton spRiethen
HMP(X,) =0, forallg.

The sequential homology and the tubular homology are related by the following exact
sequence, which is a homology version of the homotopy sequences given in [13,14].

Proposition 3.11. If X is an exterior space there is a long exact sequence

(Sh-id
Hy 00 — HE 00 — H® 00 =5 H*t) — -

Proof. Notice that the following short sequence is exact:
0—> 559Xy —% e (x) L5 s529x) — 0,

where $;°4X)* = 8359 (X) with dp°* = —d>53(X), and S (X) denotes the tubular
complex with a d|menS|on shift. On the other hawtk) = (0, —x) and B(a, x) = a.
Observe that the connecting homomorphisiisiy .-id where[x] leads tdx(Sh—x]. O

3.3. Closed tubular homology

Let X be an exterior space. By itdosed tubular chain complest(X), we mean the
subcomplex ofsP(x):
SEU(X) = {(a, x) € SP(X): ap=0}.

If £:X — Y is an exterior mapsSU(f)(a, x) = (S°1(f) (@), Sp X f)(x)).
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The nth closed tubular homologgf X is the nth homology of the comples$(X),
and it will be denoted by"(X). We can extend this notion to exterior pairs without
problems, giving rise to a new functér®': E — Ab, defined for each integer. One
can check axioms (A1), (A2) and (A3). In order to compute the closed tubular homology
of N we give a lint — lim relation for exterior spaces which are first countable at infinity.

Proposition 3.12. Let X be an exterior space first countable at infinity akid= Eg D
E1D E2 D --- afixed countable exterior base. Then there is a short exact sequence
0—> lim {Hs'”l(X E)} - HIM(X) LN Ilm{Hs'”(X E)}— 0,

forall g.

Proof. We begin by definings. Let (a, x) be ag-cycle of SSU(X). Then there is a
monotone increasing sequen@e}°, C N with ng = 0, such thatai, x;) € Ss"‘l(E ) ®
Ss'“(E ) for all k > n;. We consider; =xo+x1+ -+ + xp,-1 € Ss'”(X) and denote its
equwalence class uﬁs'”(X E) = SS'”(X)/SS'“(E ) by z;. Then we definé8([(a, x)]) =
{[z}2o € I|m{HS'”(X Ei)}.

On the other hand we also consider the homomorphjs][:- Hs'”l(X E) —

HM(X) given as follows: if{[z1}52, € [T2 OH;'fl(X, E;) thenx € sseq(X) where

x(e)) =xi =dg41(zi) € Sji”(Ei). Thene({[zi1}72) = [(0, x)]. Sincepd = 0 there exists
a uniqgue homomorphismsuch thatvr = ¢
We leave the details to the readers

Remark 3.13. There is a similar sequence for the relative case:
0 — im {HSM (X, N} > HO(X, A) > im{HI(X, )} — 0
whereE; denotesE; N A.

Corollary 3.14.

Mz, ifq=0,

HCtU(N) — {
1 0, otherwise.

There exists a relationship between the tubular, closed tubular and singular homologies.

Proposition 3.15. Let X be an exterior space. There is a long exact sequence
- — HM(X) — HYP(X) — HE™ (X) — HMY (X) — -
Proof. We only have to take into account that the following sequence of chain complexes
is exact:
0—> SAU(X) —> sb(x) L5 55 (x) — 0,

wherei is the canonical inclusion andis defined byj (a, x) =ap. O
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Corollary 3.16. If X is a topo_logical space provided with the externology of all open
subsets ok then HY(X) = H3N(X).

Hence, ifX is a compact space, théff"(X,) = H3"(X). In particular, for the singleton
space one haBY(P) = HS"(P). The same holds for the relative case.

3.4. (Co)homology theories di®® induced by (co)homology theories dap®

Another example of (co)homology theory is the following. For a given (co)homology
theory onTop®® in the sense of Eilenberg—Steenrod [5], we have a (co-)homology theory
on E@ taking into account that there exists a forgetful fundié? — Top®.

3.5. Sequential (co)homology with coefficients iamodule

Definition 3.17. Let.A be an Abelian category with sufficient projectives. We consider the
category of bounded below chain complexesArChp, (A). If f:X — Y is a chain map
in Chpp(A), then f is said to be a

— fibration, if each f;, is an epimorphism,

— cofibration if each f,, is a monomorphism and cokgf,) is projective; and

— weak equivalencéf f induces isomorphisms in homology.

It is well known thatChpp (A), with the fibrations, cofibrations and weak equivalences
given above, has a closed model category structure in the sense of Quillen [15].

Then, if (X, A) is an exterior pair, for the natural inclusionS; % A) — S5 X) we
can construct a commutative square of the form:

cof Sfeq(A) ﬂ) COfS.SeCkx)
S A) ——=89X%)

where®f s34 4), ©ofs3%% x) are cofibrant chain complexes,, px are trivial fibrations
and®’; is a cofibration. We considéffs;¢4 X, A) the coker of°f;.
Definition 3.18. Let 9t be a leftR-module. The chain complex

SRAX, A; ) = O'SSEY X, A) @ M
is said to be theequential chain complex with coefficiemt$)t of (X, A).

It is easy to check that this construction gives, for each exterior hagX, A) —

(Y, B), a chain mapSs 4 7; 90 : 5559 X, A; 9) — S:°%Y, B; ) up to homotopy and,
using a sulfficiently strong axiom of choice, a functor

H2Y; 9 E@ — R-Mod,

as well as a natural transformation H, *{ X, A; 9) — H>°1(A; ).

n
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H;°4(X, A; 9) will be called thenth sequential homology with coefficierits 9t of
(X, A).

Taking into account tha§}®4 X, A) is a pseudoprojective chain complex (that is, for all
n, S, 4 X, A) is a projectiveR-module) it is not difficult to prove (and is left as an exercise)
the following result:

Theorem 3.19. Sequential homology with coefficient<iis a homology theory oiff @
with Ho4N; 91) = 9

Remark 3.20. Observe that, in a natural way, we can define sequential cohomology with
coefficients in a leffR-modulet using the cochain complex Hagay oq (' S5°Y X, A),
1), giving rise to a cohomology theory di®.

4. Applications
4.1. Closed tubular homology and locally finite homology
To compute the cellular closed tubular homology we will use the following:

Proposition 4.1. Let{X,}.c4 be a countable family of compact spaces and consider on
LI, c 4 X». ase-open subsets the complements of all closed-compact subsets. Then

H,ft“<]_[ XA> =[] H"x).

reA reA

Proof. The case in which is finite is straightforward from the properties of a homology
theory onE@.
Suppose thatt = N. We observe that

o0 o0 o0
]_[XAD]_[XAD]_[XAD"'
=0 r=1 r=2

is an infinite countable exterior base fof;~ ; X.. Applying Proposition 3.12 one has the
desired result. O

Letel, ¢} denote am-cell and its boundary, and = ¢} — é}. SupposeX is oriented,
that is, we have chosen a generat$rfor each infinite cyclic grougd;"(D}, Sf‘l) =
H"(ef, é}). We recalled in Section 1.2.2 that the locally finite homology of a strongly
locally finite CW-complexX is given by the chain complexx'.f (X), defined as:

cn ) =[] #5"(Dr sp =[] z

LEA, LEA,

Using the excision axiom and the proposition above, for the associated exteriospace
one has a commutative diagram
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HO(X,p, X 1) ———=[Trea, HS"(D}. i)
dy?tul i_dlf
HYX -1, Xn—2) —==[Luea, , HiM(DEE, S22
Then one obtains the following:
Theorem 4.2. If X is a strongly locally finite CW-complex, then for each integdts
locally finite homology is isomorphic to its closed tubular homology

Hy (X) = HYY(X).
4.2. Tubular homology and end homology

The end homology (cf. Section 1.2.3) of a strongly locally finite CW-compléx given
by the chain complex’{°(X), defined as:

cex) =[] #™(Dy. s;7Y)) @ HS(Dy. 5777,
AEA, AEA,

and from the commutative diagram
HrtLUb(an Yn—l) ;) I—[AeAn HnSin(Dn ’ S;_l)/ @AeAn HnSin(Dn’ S’)f_l)
d}gubl _d,?o
H;EUb(Yn—lv Y11—2) = I—[ueAn,l I_InSTl(DZ_l7 Sn—Z)/ @ueAn,l HnSTl(DZ_l’ S”_z)
the following follows.
Theorem 4.3. If X is a strongly locally finite CW-complex, then for each integés end
homology is isomorphic to its tubular homology

HX(X) = HY°(X).
4.3. Comparison of sequential homology with singular, locally finite and end homology

We note that the Abelian grougbg” Z, [15° Z and[[5° Z/ @g° Z have the structure of
left R-modules given as follows: An element &f is given by a locally finite(co x 00)-
matrix and an element €Bg° Z can be represented by(@ x 1)-matrix. The action of the
ring on the Abelian group is induced by matrix multiplication, and similarly for the other
Abelian groups.

Given a strongly locally finite CW-compleX, and the associated exterior spateone
has natural isomorphisms

oo
H (X Frm) O (EB Z) = HE X, X),
0
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o0
H(X, B 1) @r (n z) = 52X, X,
0

o0 o
Hy (X X)) O (]‘[ z/ @Z) = H. (X, Xa-1),
0 0
that commute with boundary operators. Then one has:

Theorem 4.4. Let X be a strongly locally finite CW-complex. Then for each integeme
has the following isomorphisms
(i) Ha 4X: D57 2) = HSN(X),
(i) Hy XTI 2) = Hy (X),
(i) Hy XTI 2/ DY Z) = H®(X).

Now, using the results of the subsection above, one has:

Corollary 4.5. Let X be a strongly locally finite CW-complex. Then for each integer
one has the following isomorphisms

() Hy XX T15°2) = HM(X),

(i) H2 "X 15 2/ @F 2) = H°(X).

4.4, Comparison of sequential cohomology with compact support, singular and end
cohomology

The Abelian groupgbg’ Z, [15° Z and[[5° Z/ @g° Z also have the structure of right
R-module induced by matrix multiplication.
Given a strongly locally finite CW-compleX, one has natural isomorphisms

o0

Homyg (H,fec‘(Yn, Xn-1), EBZ) = Hi(Xn, Xn-1),
0
o0

Homg (H,fec‘( Xn, Xn-1), ]"[Z) = HengXn, Xn-1),
0

o0 o
Homz (H,fec‘(Yn, Xo1), [ [2/ EBZ) = HX(Xp, Xu-1),
0 0
that commute with boundary operators. Then one has:

Theorem 4.6. Let X be a strongly locally finite CW-complex. Then for each integeme
has the following isomorphisms
() Hied X; DG Z) = HI(X),
(i) HiodX: TI3 2) = Hlp(X),
(i) Hied X;Tlo” 2/ Pg Z) = HL(X).
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4.5. Comparison of sequential homology witach and Steenrod homology

Given a compact metric spacg, one can consider the open fundamental complex
OFC(X) introduced by Lefschetz [10], which is a strongly locally finite complex. The
sequential homology andech homology are related as follows: We can consider the shift
operatorSh: Bg° Z — g’ Z given byShzo, z1, z2, ...) = (z1, z2, . . .) andid-Shwhich
is an element of the rin§.. We take into account the fact that the homology gréidp(X)
has the structure of &R-module. It is easy to check the following:

Theorem 4.7. Let X be a compact metric space and consider the exterior sP&ee(X).
Then

H,(X) = {x € H;°{OFC(X))/x(id-Sh = 0}.
With respect to Steenrod homology one has the following:

Theorem 4.8. Let X be a compact metric space and consider the exterior sP&ee(X).
Then

(i) forany integem, H>°3(OFCX); [[5 Z) = HS, (OFC(X)) = AS(X),

(i) forany integem, H, 1 (OFC(X); [15° Z/ @Y Z) = H“® (OFC(X)) = H3(X).

Remark 4.9. Notice thatHgt“(OFC(X)) = H(t)“b(OFC(X)) =0.
4.6. Comparison of sequential cohomology voch cohomology
Using the notation of the subsection above, one has:

Theorem 4.10. Let X be a compact metric space and consider the exterior space
OFC(X). Then -
(i) forany integem, Higit(OFC(X); By Z) = H"(X),

(ii) forany integem, H{OFC(X); [z &y Z) = H"(X).
4.7. Poincaré duality

In the ringR of locally finite matrices one has the transposition antihomomorphism,
which applies a matrix to its transpose and is denoted by A right R-module also
admits the structure of a leR-module by the action-m =m -r’.

Theorem 4.11.
Let M be a triangulable, second countable, orientaldenanifold. Then
() HéeM) = H,%)(M);
(ii) for any rightR-moduledt, Héeq M; M) = H,°1 (M ), where in the second part
of the isomorphisrt is considered as a lefR-module.
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Proof. Denote byM’ the dual triangulation of the-manifold M. Taking into account the
properties of incidence of dual cells one has that the following diagram,

Hsreq(M”’ Mr—l; m—— Hseq(Wn—r , Wn—r—ﬂ om)

n—r

| |

Hsrg(_}l(ﬁr-i-l’ M,; M) —— Hnsfg_l(ﬁn—r—L Wn—r—Z; m)

which commutes perhaps up to a sign. Therefore one obtains (i), anfiifer R,
(i) follows. O

Corollary 4.12. Let M be a triangulable, second countable, orientaldenanifold. Then

() HEM) = HéedM; B Z) = H,°d (M BF Z) = HE", (M),
(i) HW (M) = Héed M [15°2) = HeS (L 13 2) = H,y (M),

(i) HE (M) = Hed M [1§° 2/ B 2) = Hyog (M T15 2/ B ) = H2 ,(M).
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