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Abstract

The notion of exterior space consists of a topological space together with a certain nonempty
family of open subsets that is thought of as a ‘system of open neighborhoods at infinity’. An exterior
map is a continuous map which is ‘continuous at infinity’. A strongly locally finite CW-complex
X, whose skeletons are provided with the family of the complements of compact subsets, can be
considered as an exterior spaceX. Associated with a compact metric space we also consider the
open fundamental complexOFC(X) introduced by Lefschetz.

In this paper we use sequences of cycles converging to infinity to introduce ‘ordinary’ sequential
homology and cohomology theories in the category of exterior spaces. One of the interesting differ-
ences with respect to the ordinary theories of topological spaces is that the role of a point is played
by the exterior spaceN of natural numbers with the discrete topology and the cofinite externology.

For a strongly locally finite CW-complexX, we see that the singular homology ofX is isomorphic
to H seq• (X;⊕∞

0 Z), the locally finite homology is isomorphic toH seq• (X;∏∞
0 Z) and the end

homology is isomorphic toH seq• (X;∏∞
0 Z/

⊕∞
0 Z). For cohomology one has that the compact

support cohomology is isomorphic toH •
seq(X;⊕∞

0 Z), the singular cohomology is isomorphic to

H •
seq(X;∏∞

0 Z) and the end cohomology is isomorphic toH •
seq(X;∏∞

0 Z/
⊕∞

0 Z).

With respect to the Lefschetz fundamental complex, one has that theČech homology of a
compact metric space can be found as a subgroup ofH

seq• (OFC(X);R), the Steenrod homology
is isomorphic toH seq

•+1(OFC(X);∏∞
0 Z/

⊕∞
0 Z) and theČech cohomology ofX is isomorphic to

H •
seq(OFC(X);∏∞

0 Z/
⊕∞

0 Z).

Finally, one also has a Poincaré isomorphismHqseq(M)∼=H seq
n−q (M), whereM is a triangulable,

second countable, orientable,n-manifold. We remark that in both sides of the isomorphism we are
using sequential theories. 2001 Elsevier Science B.V. All rights reserved.
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Introduction

The proper category of spaces and proper maps is a suitable framework for the study
of noncompact spaces. Nevertheless, one of the problems of this category is that it does
not have enough limits and colimits to develop the usual homotopy constructions such as
homotopy fibres and loop spaces. Recently, the authors together with García Pinillos [8]
have given a solution using the notion of exterior space. The categoryE of exterior spaces
is complete and cocomplete and contains the proper category as a full subcategory.

An exterior space(X, ε ⊂ τ ), consists of a topological space(X, τ) together with
a nonempty family of open subsetsε, called externology, which is closed by finite
intersections and such that ifU is an open subset andU ⊃E, E ∈ ε, thenU ∈ ε.

In this paper we consider analogues of the ordinary homology and cohomology theories
defined for the category of pairs of exterior spaces.

An ordinary homology theoryfrom the category of pairsE(2) to an Abelian categoryA
is a pair(H, ∂), whereH consists of a family of functors

Hq :E(2) → A, q ∈ Z,

and∂ is a family of natural transformations

∂ = ∂q :Hq(X,A)→Hq−1(A), q ∈ Z,

satisfying certain basic properties analogous to the Eilenberg–MacLane axioms of ordinary
homology. Acohomology theoryfrom E(2) to an Abelian categoryA is just a homology
theory fromE(2) to the opposite categoryAop.

These theories are called ordinary because for certain cellular spaces, called bi-
complexes, the homology groups are determined by the coefficient groupH

seq
0 (N), where

N is the exterior space of nonnegative integers. A bi-complex consists of an exterior space
X together with a filtration∅ = X−1 ⊂ X0 ⊂X1 ⊂ · · · ⊂ X, such thatX is the colimit of
the skeletonsXn of the filtration. Then-skeletonXn is obtained from the (n− 1)-skeleton
Xn−1 by attaching singlen-cells,Dn, where the externology agrees with the usual topol-
ogy and noncompactn-cells,Dn×̄N, that have the usual topology and the cocompact ex-
ternology. We note that a strongly locally finite CW-complexX, whose skeletons have the
externology of the complements of compact subsets, has the structure of a bi-complexX

having, for eachn � 0, its n-skeleton consisting of a finite number of cells. We remark
thatXn, as a CW-complex, can have an infinite number of standard cells. The importance
of bi-complexes having finiten-skeletons is that the homology is isomorphic to the corre-
sponding cellular homology which is determined by the coefficient group.

In this context, we think that the most important ordinary homology theory for exterior
spaces (which are first countable at infinity) is the theory introduced in this paper that we
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have calledsequential homology. It is called sequential because its definition is based on
sequencesc = (c0, c1, c2, . . .) of singularn-chains converging to infinity. Ann-cycle is a
sequence of singularn-cycles and ann-boundary a sequence of singularn-boundaries, in
both cases converging to infinity. It is very interesting to remark that the Abelian group of
n-chains admits the structure of anR-module, whereR is the ring of locally finite matrices
(see [6]), whose elements are matrices with integral entriesaij , wherei, j are nonnegative
integers, such that each file and column have a finite number of nonzero entries.

We have also introduced the homologies that we have calledtubular homologyand
closed tubular homology. In the first case, then-cycles are determined by a sequence of
(n−1)-cycles(z0, z1, z2, . . .) and a sequence ofn-chainsc= (c0, c1, c2, . . .) in such a way
that∂c0 = z0 − z1, ∂c1 = z1 − z2, . . . ; that is, we have an ‘infinite tube’ with boundaryz0.
Takingn-cycles withz0 = 0, we have ‘infinite closed tubes’ that give rise to closed tubular
homology.

In order to have sequential homology and cohomology with coefficients, it is convenient
to have chain complexes that are projective at each dimension. We solve this problem
using the structure of the closed model category of the category of chain complexes of
R-modules which are bounded below. This permits the use of cofibrant approximations to
define homology and (cohomology) with coefficients in a left (right)R-module. There
are threeR-modules that play an important role in this theory:

⊕∞
0 Z,

∏∞
0 Z and∏∞

0 Z/
⊕∞

0 Z. The action of the ring on the left and on the right is given by matrix
multiplication.

We have noted that for a bi-complex with finiten-skeletons, the sequential homology
with coefficients in

⊕∞
0 Z is the singular homology; taking coefficients in

∏∞
0 Z, one has

the closed tubular homology; and using
∏∞

0 Z/
⊕∞

0 Z, one has the tubular homology. In
this paper we also compare the new homologies and cohomologies for exterior spaces with
the standard homologies and cohomologies.

LetX be a locally finite CW-complex and consider the associated bi-complexX where
then-skeleton is provided with the cocompact externology and inX we take the colimit
externologyX= colimXn.

We note the following relations for a strongly locally finite CW-complexX:
(i) the singular homology ofX is isomorphic to the sequential homology ofX with

coefficients in
⊕∞

0 Z,
(ii) the locally finite homology ofX is isomorphic to the closed tubular homology of

X and to the sequential homology with coefficients in
∏∞

0 Z,
(iii) the end homology ofX is isomorphic to the tubular homology ofX and to the

sequential homology with coefficients in
∏∞

0 Z/
⊕∞

0 Z,
(iv) the compact support cohomology ofX is isomorphic to the sequential cohomol-

ogy ofX with coefficients in
⊕∞

0 Z,
(v) the singular cohomology ofX is isomorphic to the sequential cohomology ofX

with coefficients in
∏∞

0 Z,
(vi) the end cohomology ofX is isomorphic to the sequential cohomology ofX with

coefficients in
∏∞

0 Z/
⊕∞

0 Z.
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Associated with a compact-metric spaceY one also has the open fundamental complex
OFC(Y ), introduced by Lefschetz [10] and also called the telescopic construction of
Milnor [12], and the corresponding exterior spaceOFC(Y ). We have then that

(vii) the Čech homology group ofY can be found as the subgroup of theR-module of
sequential homology ofOFC(Y ) annihilated by the elementid-Shof the ringR
of locally finite matrices,

(viii) the nth Steenrod homology group ofY is isomorphic to the(n + 1)th tubular
homology group ofOFC(Y ) and to the(n + 1)th sequential homology group
of OFC(Y ) with coefficients in

∏∞
0 Z/

⊕∞
0 Z, and thenth reduced Steenrod

homology group of ofY is isomorphic to the(n+ 1)th closed tubular homology
group ofOFC(Y ) and to the(n + 1)th sequential homology group ofOFC(Y )
with coefficients in

∏∞
0 Z,

(ix) the Čech cohomology ofY is isomorphic to the sequential cohomology group
of OFC(Y ) with coefficients in

∏∞
0 Z/

⊕∞
0 Z, and thenth reducedČech

cohomology ofY is isomorphic to the(n + 1)th sequential homology group of
OFC(Y ) with coefficients in

⊕∞
0 Z.

Finally, we observe that for a triangulable, second countable, orientablen-manifoldM,
theq th sequential homology ofM is isomorphic to the (n− q)th sequential cohomology
ofM . We remark that we use only sequential homology and sequential cohomology.

1. Preliminaries

1.1. The category of exterior spaces

LetX andY be topological spaces. A continuous mapf :X→ Y is said to beproper if
for every closed compact subsetK of Y , f−1(K) is a compact subset ofX. The category of
spaces and proper maps will be denoted byP . This category and the corresponding proper
homotopy category are very useful for the study of noncompact spaces. Nevertheless, one
has the problem that this category does not have enough limits and colimits, and so we
cannot develop the usual homotopy constructions such as loops, homotopy limits and
colimits, etc.

In [8] we gave a solution to this problem introducing the notion of exterior space. The
category of exterior spaces and maps is complete and cocomplete, and contains as a full
subcategory the category of spaces and proper maps. Furthermore, it has a closed simplicial
model category structure in the sense of Quillen [15], hence it establishes a nice framework
for the study of proper homotopy theory. We begin by recalling the notion of exterior space.

Roughly speaking, an exterior space is a topological spaceX with a neighbourhood
system at infinity.

Definition 1.1. An exterior space(or exterior topological space)(X, ε ⊂ τ ) consists of a
space(X, τ) together with a nonempty collectionε of open subsets, calledexternology,
satisfying:
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(E1) if E1,E2∈ ε thenE1 ∩E2 ∈ ε,
(E2) if E ∈ ε , U ∈ τ andE ⊂U thenU ∈ ε.
An open setE which is inε is said to be anexterior-opensubset or in short, ane-open

subset. A mapf : (X, ε ⊂ τ )→ (X′, ε′ ⊂ τ ′) is said to beexterior if it is continuous and
f−1(E) ∈ ε, for all E ∈ ε′.

The category of exterior spaces and maps will be denoted byE.
Given an space(X, τ), one can always consider thetrivial exterior space by taking

ε = {X}, and thetotal exterior space if one takesε = τ . In this paper, an important role
will be played by the familyεXcc of the complements of closed-compact subsets ofX.

There is a full embeddinge :P ↪→ E. It carries a spaceX to the exterior spaceXe
which is provided with the topology ofX andεXcc. A proper mapf :X→ Y is carried to
the exterior mapfe :Xe → Ye given byfe = f .

Definition 1.2. Let (X, ε ⊂ τ ) be an exterior space. Anexterior baseon (X, ε ⊂ τ ) is a
collection ofe-open subsets,β ⊂ ε, such that for everye-open subsetE there existsB ∈ β
such thatB ⊂ E. If an exterior spaceX has a countable exterior baseβ = {En}∞n=0 then
we say thatX is first countable at infinity.

Note that for these exterior spaces we can suppose, without loss of generality, that

X =E0 ⊃E1 ⊃E2 ⊃ · · · ⊃En ⊃ · · · .
Notice that everyσ -compact space provided withεXcc is first countable at infinity.

An exterior base is very useful for checking when a continuous mapf : (X, ε ⊂ τ )→
(X′, ε′ ⊂ τ ′) between exterior spaces is exterior. It is sufficient to see thatf−1(B) ∈ ε for
all B ∈ β ′, whereβ ′ is a given exterior base.

Definition 1.3. LetX be an exterior space andY be a topological space. We consider on
X× Y the product topology and the distinguished open subsetsE of X× Y, such that for
eachy ∈ Y there existsUy ∈ τY , y ∈ Uy andEy ∈ εX such thatEy×Uy ⊂E. This exterior
space will be denoted byX×̄Y.

This construction gives a functorE × Top → E, whereTop denotes the category of
topological spaces. WhenY is a compact space, we can prove thatE is ane-open subset if
and only if it is an open subset and there existsG ∈ εX such thatG×Y ⊂E. Furthermore,
if Y is a compact space andεX = εXcc, thenεX×̄Y coincides with the complements of all
closed-compact subsets ofX× Y .

We will consider the setN of nonnegative integers with the discrete topology and the
cofinite externology.

Let Sn−1, Dn be the (n− 1)-sphere and then-disc, respectively. We will let

Sn−1 = N×̄Sn−1, for n� 1

and letS−1 = ∅. Similarly Dn = N×̄Dn, n� 0.
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Recall that a CW-complexis a spaceX with a filtration

∅ =X−1 ⊂X0 ⊂X1 ⊂ · · · ⊂X
such thatX is the colimit of the filtration and forn � 0,Xn is obtained fromXn−1 by a
push-out inTop of the form∐

α∈An S
n−1
α

∐
α∈An ϕα Xn−1

in∐
α∈An D

n
α ∐

α∈An ψα
Xn

The notion ofN-complex was introduced in [8]. It can be constructed from a discrete space
provided with the complements of its finite subsets by consecutively attaching noncompact
cells.

Definition 1.4. An N-complexconsists of an exterior spaceX with a filtration

∅ =X−1 ⊂X0 ⊂X1 ⊂ · · · ⊂X
such thatX is the colimit of the filtration and forn � 0,Xn is obtained fromXn−1 by a
push-out inE of the form∐

α∈An Sn−1
α

∐
α∈An ϕα Xn−1

in∐
α∈An Dnα ∐

α∈An ψα
Xn

One can check that a locally finite CW-complexX with finite dimensiond and, for
each 0� k � d , either having nok-cells or having a countably infinite number ofk-cells,
provided withεXcc admits the structure of a finiteN-complex. IfXn is obtained fromXn−1

by a push-out inE of the form

(
∐
α∈An Sn−1

α )
∐
(
∐
β∈Bn S

n−1
β )

(
∐
α∈An ϕα)

∐
(
∐
β∈Bn ϕβ)

Xn−1

in

(
∐
α∈An Dnα)

∐
(
∐
β∈Bn D

n
β) (

∐
α∈An ψα)

∐
(
∐
β∈Bn ψβ)

Xn

where inSn−1
β , Dnβ we consider their topologies as externologies, we obtain the notion

of bi-complex. It is not difficult to see that a countable locally finite, finite-dimensional
CW-complex with externologyεXcc admits the structure of a finite bi-complex.

Definition 1.5. The subsetsψα(Dnα), ψβ(D
n
β) are called then-dimensionalN-cell and

n-dimensional simple cell, respectively.ϕα andϕβ are called theattaching maps.
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1.2. Homology and cohomology of CW-complexes

In this paper we deal with several homologies and cohomologies for suitable CW-com-
plexes as well as their corresponding cellular homologies and cohomologies.

1.2.1. Singular homology and cohomology
If X is a space, letSsin• (X) denote the singular chain complex andH sin

n (X)=Hn(S•(X))
the singular homology ofX. The cellular chain complex of a CW-complexX, Csin• (X), is
given by

Csin
n (X)=Hsinn (Xn,Xn−1)∼=

⊕
An

Z,

whereAn is the set ofn-cells ofX and the boundary homomorphism is the composite

H sin
n (Xn,Xn−1)

∂−→H sin
n−1(Xn−1)

jn−1−→H sin
n−1(Xn−1,Xn−2),

where ∂ denotes the boundary operator of the topological pair(Xn,Xn−1) and jn−1

is the homomorphism induced by the inclusion(Xn−1,∅) ⊂ (Xn−1,Xn−2). As is well
known, the singular homology groups of a CW-complex are isomorphic to its cellular
homology groups. Thenth singular cohomology groupHnsin(X) with integral coefficients is
given by the cohomology of the singular cochain complexHn(S•

sin(X)), whereSnsin(X)=
Hom(Ssin

n (X),Z). If X has the structure of a CW-complex, then the singular cohomology
of X is isomorphic to the cohomology of its cellular cochain complex

Cnsin(X)=Hnsin(Xn,Xn−1)∼=∏
An

Z.

1.2.2. Locally finite homology and compact support cohomology
A locally finite singularn-chain of a spaceX is a product

∏
α nασα, with nα ∈ Z

and σα :∆n → X singularn-simplexes, such that for eachx ∈ X there exists an open
neighbourhoodU of x such that{α | U ∩ σα(∆) �= ∅, nα �= 0} is finite. The locally finite
singular chain complexS lf• (X) is the chain complex withS lf

n (X) the Abelian group of
locally finite singularn-chains and the usual boundary homomorphisms. The locally finite
homology ofX is denoted byH lf

n (X).
A proper closed mapf :X→ Y between locally compact Hausdorff spaces induces, for

each integern, a homomorphismf∗ :H lf
n (X)→H

lf
n (Y ).

The locally finite cellular chain complex of a strongly locally finite CW-complexX,
C

lf• (X), is defined by

C
lf
n (X)=H lf

n (Xn,Xn−1)∼=∏
An

Z,

and the boundary homomorphismd lf
n is the composite

H
lf
n (Xn,Xn−1)

∂−→H
lf
n−1(Xn−1)

jn−1−→H
lf
n−1(Xn−1,Xn−2).

The chain complexesS lf• (X) andC lf• (X) are homology equivalent whenX is strongly
locally finite; that is, ifX is the union of a countable, locally finite collection of finite
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subcomplexes. Note that every countable, locally finite, finite-dimensional CW-complex is
a strongly locally finite CW-complex.

A q-cochainc: Sq(X)→ Z hascompact supportif there is compact subsetK ⊂X such
that if aq-simplexσ is contained inX \K, thenc(σ )= 0. The complexS•

cs(X) of compact
support cochains gives thenth compact support cohomology groupHncs(X)=Hn(S•

cs(X)).
The corresponding cellular cochain complex of a strongly locally finite CW-complexX,

C•
cs(X) is given by

Cncs(X)=Hncs(Xn,Xn−1)∼=
⊕
An

Z.

The cochain complexesS•
cs(X) andC•

cs(X) are homology equivalent whenX is strongly
locally finite. For more details and properties of these theories, we refer the reader to [9].

1.2.3. Homology and cohomology at infinity
Thesingular chain complex at infinityof a spaceX is given byS∞• (X)= S lf• (X)/Ssin• (X)

and the correspondingnth singular homology group at infinity is denoted byH∞
n (X).

If X is a strongly locally finite CW-complex, thecellular chain complex at infinityof X
is given by

C∞
n (X)=H∞

n (Xn,Xn−1)∼=
∏
An

Z/
⊕
An

Z.

WhenX is a strongly locally finite CW-complex, we have that the singular locally finite
homology is given by the cellular chain complex at infinity.

The singular cochain complex at infinityof a spaceX is given by Sn∞(X) =
S•

sin(X)/S
•
cs(X) and the correspondingnth singular cohomology group at infinity is

denoted byHn∞(X).
If X is a strongly locally finite CW-complex, thecellular cochain complex at infinityof

X is given by

Cn∞(X)=Hn∞(Xn,Xn−1)∼=
∏
An

Z/
⊕
An

Z.

When X is a strongly locally finite CW-complex, we have that the compact support
cohomology is isomorphic to the cohomology of the cellular cochain complex at infinity.
We also refer to these homology and cohomology groups as the end homology and end
cohomology, see [9].

1.2.4. Čech homology and cohomology
If X is a compact metric space, letUi be a sequence of finite open covers ofX such that

Ui+1 refinesUi and limi→∞ sup{diam(U)/U ∈ Ui} = 0.
TheČech homology ofX is given by the inverse limitȞn(X)= lim{H sin

n (Ni)}, where
Ni denotes the (̌Cech) nerve ofUi . TheČech cohomology is defined to be the direct limit
Ȟ n(X) = lim{Hnsin(Ni)}. For a formulation ofČech homology and cohomology groups
based on more general resolutions we refer the reader to [11].
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1.2.5. Steenrod homology
Let X be a compact metric space. Aregular mapof a simplicial complexK in X is a

functionf defined over the vertices ofK with values inX, such that, for allε > 0, all but
finitely many simplexes have their vertices imaging onto sets of diameter< ε. A regular
n-chainof X is a triple(K,f,σn), whereK is a simplicial complex,f is a regular map
of K in X andσn is a locally finiten-chain ofK. If σn is ann-cycle, then(K,f,σn) is a
regularn-cycle. Two regularn-cycles(K1, f1, σ

n
1 ), (K2, f2, σ

n
2 ) arehomologousif there

exists an(n+ 1)-chain(K,f,σn+1) such thatK1 andK2 are closed subcomplexes ofK,
f agrees withf1 on K1 andf2 onK2 and∂(σn+1) = σn1 − σn2 . This construction was
introduced by Steenrod [16] and the corresponding reduced homology of a compact metric
spaceX will be denoted byH̃St

n (X). For more properties of Steenrod homology we refer
the reader to [7,12,2,4].

2. Axioms of homology theory for exterior spaces. Cellular homology

In this section we analyze a family of axioms for a homology theory on the category
E(2) of exterior pairs and maps and the induced cellular homology for exterior spaces
which admit the structure of a bi-complex.

By anexterior pair(X,A) we mean an exterior spaceX and a subspaceA⊂X provided
with εA, which consists of those open subsets of the formE∩A, whereE ∈ εX . In the obvi-
ous way, we have the notion of an exterior mapf : (X,A)→ (Y,B) between exterior pairs.

Given two exterior mapsf0, f1 : (X,A)→ (Y,B), f0 andf1 are said to behomotopic
if there exists an exterior maph : (X×̄I,A×̄I)→ (Y,B) such thath(x,0) = f0(x) and
h(x,1)= f1(x), for all x ∈X.

Definition 2.1. An ordinary homology theory onE(2) with ‘values’ in an Abelian category
A consists of a collectionH = (H, ∂) whereH is a sequence of functorsHq :E(2) → A,
indexed by the set of all integers, and∂ is a sequence of natural transformations∂q =
∂ :Hq(X,A)→ Hq−1(A), called boundary operators, such thatH satisfies the following
axioms:

(A1) (Exactness axiom) Let (X,A) be an exterior pair andi :A→ X, j :X→ (X,A)

denote the inclusion maps. Then, the sequence

· · · →Hq(A)
i∗→Hq(X)

j∗→Hq(X,A)
∂→Hq−1(A)→ ·· ·

is exact, wherei∗, j∗ denoteHq(i) andHq(j), respectively.
(A2) (Homotopy invariance axiom) If f,g : (X,A)→ (Y,B) are homotopic exterior

maps, thenf∗ = g∗ :Hq(X,A)→Hq(Y,B), for every integerq .
(A3) (Excision axiom) Let X be an exterior space which is first countable at infinity

andU be an open subset ofX such thatCl(U)⊂ Int(A), whereA is an exterior
subspace ofX. Then, the inclusion mapi : (X−U,A−U)→ (X,A) induces an
isomorphismi∗ :Hq(X−U,A−U)→Hq(X,A), for every integerq .

(A4) (Dimension axiom) Hq(N)= 0 for every integerq �= 0.

The objectG=H0(N) is called thecoefficient objectof the homology theoryH.



210 J.M. Garcia-Calcines, L.J. Hernandez-Paricio / Topology and its Applications 114 (2001) 201–225

Definition 2.2. A cohomology theory onE(2) with values in an Abelian categoryA is a
homology theory with values in the opposite categoryAop.

It is easy to check that for each exterior pair(X,A), whereX is an exterior space which
is first countable at infinity andX is the disjoint union ofn open subspacesX1,X2, . . . ,Xn,
the inclusion mapik : (Xk,Ak)→ (X,A), with Ak = A ∩ Xk , induces a monomorphism
(ik)∗ :Hq(Xk,Ak)→Hq(X,A), for k = 1,2, . . . , n, and every integerq . Furthermore, the
homomorphism

φ =
n∑
k=1

(ik)∗ :
n⊕
k=1

Hq(Xk,Ak)→Hq(X,A)

is an isomorphism for every integerq .
As a consequence, we have that, in general, it is not possible to find a homology theory

on E(2) associated with every objectG. The isomorphismN
∐

N ∼= N gives rise to an
induced isomorphismG ⊕ G ∼= G, and therefore the coefficient objectG has this nice
property. Several examples of ordinary homology theories onE(2) will be developed in
next section.

Throughout this section it is assumed thatH = (H, ∂) is an arbitrarily given ordinary
homology theory onE(2).

If P denotes the singleton set, we will consider the exterior space(P, {∅,P } ⊂ {∅,P }).
The following result establishes that the homology ofP is determined by the homology
of N.

Proposition 2.3. Let sh:N → N be the ‘shift operator’ given by sh(k) = k + 1, for all
k ∈ N. Then

Hn(P )=
{

coker((sh)∗ :H0(N)→H0(N)) if n= 0,

0 otherwise.

Proof. We consider the homology sequence of(N,N(1)), whereN(1)= {k ∈ N: k � 1}.
Taking into account thatsh′ :N → N(1), defined bysh′(k)= k + 1, is an isomorphism in
E andi(sh′)= sh, wherei denotes the inclusionN(1)⊂ N, we obtain an exact sequence

0 →H1
(
N,N(1)

)→H0(N)
(sh)∗−→H0(N)→H0

(
N,N(1)

)→ 0.

Since the mapr :N → N given byr(k)= k−1 if k � 1 andr(0)= 0 satisfies thatr sh= id,
then(sh)∗ is a monomorphism, soH1(N,N(1))= 0. Note that by using the excision axiom
we have thatHq(N,N(1))=Hq(P ). We conclude thatH0(P )∼= coker((sh)∗). The rest of
the proof is straightforward.✷

We introduce what we call theN-reduced homologyassociated withH on the category

E
N

N whose objects are commutative triangles inE of the form

N
id

iX

N

X

rX
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denoted by(iX,X, rX). A morphism(iX,X, rX)→ (iY , Y, rY ) consists of an exterior map
f :X→ Y such thatf iX = iY andrY f = rX . Observe thatSn can be considered as an

object inE
N

N, takingiSn (k)= (k,∗) andrSn (k, x)= k, for all k ∈ N andx ∈ Sn. Here∗
denotes the base point ofSn, (1,0, . . . ,0).

Another special object isN, with iN = rN = idN.

Definition 2.4. Let (iX,X, rX) be an object ofE
N

N. We define itsq th N-reduced homology
as the kernel

H̃q(X)= ker
(
(rX)∗ :Hq(X)→Hq(N)

)
.

Obviously this defines a functorE
N

N →A for every integerq . TheN-reduced homology
has nice properties, such as the existence of an exact sequence of theN-reduced homology

associated with an inclusionA ⊂ X in E
N

N
and the homotopy invariance. Furthermore,

there is an isomorphismHq(X)∼=Hq(N)⊕ H̃q(X), for every integerq .
Using analogous techniques to those considered in singular homology theory, it is not

difficult to see that̃Hq(Sn) isG if q = n and 0 ifq �= n. Hence we have that

Hq(S
n)=


0 if n �= q �= 0,

G if n �= q = 0 orn= q �= 0,

G⊕G if n= q = 0.

On the other hand, in order to computeHq(Sn), where Sn has the topology as the
collection of e-open subsets, we introduce theP -reduced homology associated withH
on the categoryEP

P of exterior spaces over and underP . We define˜̃H(X)= ker
(
(rX)∗ :Hq(X)→Hq(P )

)
for each exterior space over and underP and integerq . By similar arguments we have that
Hq(S

n) is 0 if n �= q �= 0,G′ if n �= q = 0 orn= q �= 0, andG′ ⊕G′ if n= q = 0, where
G′ denotesH0(P ).

Definition 2.5. By a finite bi-complex pairwe mean an exterior pair(X,A), whereX is a
bi-complex with a finite number of cells andA is a subcomplex ofX.

Let (X,A) be a finite bi-complex pair such thatX is obtained fromA by attaching
n-cells

(
∐k
i=1 S

n−1
i )

∐
(
∐m
i=k+1S

n−1
i )

(
∐k
i=1ϕi )

∐
(
∐m
i=k+1ϕi )

A

in

(
∐k
i=1 Dni )

∐
(
∐m
i=k+1D

n
i ) (

∐k
i=1ψi)

∐
(
∐m
i=k+1ψi)

X

Using the excision property, one can prove that

(ψi)∗ :Hq
(
Dni ,S

n−1
i

)→Hq(X,A) (1� i � k)
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and

(ψi)∗ :Hq
(
Dni , S

n−1
i

)→Hq(X,A) (k + 1 � i �m)

are monomorphisms and the homomorphism

h=
m∑
i=1

(ψi)∗ :Hq
(
D
n
i ,S

n−1
i

)k ⊕Hq
(
Dni , S

n−1
i

)m−k →Hq(X,A)

is an isomorphism, where the exponents denote the number of copies of the corresponding
object. Since we have thatHq(Dn,Sn−1) isG if q = n and 0 ifq �= n, andHq(Dni , S

n−1
i )

isG′ if q = n and 0 ifq �= n, we have as a consequence that

Hq(X,A)=
{
Gk ⊕ (G′)m−k if q = n,
0 otherwise.

By the relative dimensionof a finite bi-complex pair(X,A), dim(X,A), we mean the
smallest integern satisfyingX − A ⊂ Xn. In caseX − A = ∅ we set dim(X,A) = −1.
By using inductive arguments, we can prove without difficulty that if dim(X,A)= n, then
Hq(X,A)= 0 for everyq < 0 andq > n. In particular, given a finite bi-complexX, then
Hq(Xn)= 0 for all q > n.

Definition 2.6. Thecellular chain complexC•(X) of a bi-complexX, is defined to be

Cn(X)=Hn(Xn,Xn−1),

with boundary homomorphismdn the composite

Hn(Xn,Xn−1)
∂−→Hn−1(Xn−1)

jn−1−→Hn−1(Xn−1,Xn−2),

where∂ denotes the boundary operator of the exterior pair(Xn,Xn−1) and jn−1 is the
homomorphism induced by the inclusion(Xn−1,∅)⊂ (Xn−1,Xn−2).

Thenth cellular homologyof X, H cel
n (X), is thenth homology of this chain complex.

We are going to prove that the cellular homology and the homology coincide on finite bi-
complexes. In fact, we shall give an algorithm which allows us to compute the homology
for this distinguished class of exterior spaces.

We consider the diagram

Hn(X)
kn←−Hn(Xn) jn−→Hn(Xn,Xn−1),

wherekn andjn are the homomorphisms induced by the respective inclusion maps.

Theorem 2.7. LetX be a finite bi-complex. Then
(a) kn is an epimorphism,
(b) jn is a monomorphism, and
(c) im(jn)= ker(dn), ker(kn)= j−1

n (im(dn)).
Hence,θn = jnk−1

n :Hn(X)→H cel
n (X) is an isomorphism.
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Proof. Consider the following part of the exact homology sequence associated to the
exterior pair(Xn,Xn−1):

0 −→Hn(Xn)
jn−→Hn(Xn,Xn−1)

∂−→Hn−1(Xn−1)
(∗)

in−→Hn−1(Xn)−→ 0.

If q �= n andq �= n− 1, thenHq+1(Xn,Xn−1)= 0 =Hq(Xn,Xn−1), soin :Hq(Xn−1)→
Hq(Xn) is an isomorphism.

Suppose that dim(X) � m andn � m. If q < m, we have the following commutative
diagram:

Hq(Xq+1)
iq+2

∼=

kq+1

Hq(Xq+2)
iq+3

∼=
kq+2

Hq(Xq+3)
iq+4

∼=
kq+3

· · · im
∼= Hq(Xm)

km=id

Hq(X)

It follows that kα : Hq(Xα)→ Hq(X) is an isomorphism, for allα > q. Hence,kq+1 :
Hq(Xq+1)→Hq(X) is an isomorphism. From(∗) we deduce thatjn is a monomorphism
andin an epimorphism. Sinceknin = kn−1 andkn is an isomorphism, it follows thatkn−1

is an epimorphism. Furthermore, ker(kn−1)= ker(in), so the following sequence is exact:

0 −→Hn(Xn)
jn−→Hn(Xn,Xn−1)

∂−→Hn−1(Xn−1)
kn−1−→Hn−1(X)−→ 0.

Sincedn = jn−1∂ and jn−1 is a monomorphism, then we have that ker(dn) = ker(∂) =
im(jn). On the other hand ker(kn−1)= im(∂)= j−1

n−1(im(jn−1∂))= j−1
n−1(im(dn)). ✷

One can prove that the same result holds for finite bi-complex pairs(X,A), using the
chain complexCn(X,A) = Hn(Kn,Kn−1), whereKn = Xn ∪ A. On the other hand, if
Hq satisfies the condition thatHq(X) = colimHq(Xn), then the theorem also holds for
bi-complexes with a finite number of cells in each dimension.

Finally, note that finiteN-complexes and finite CW-complexes embedded inE are finite
bi-complexes.

Remark 2.8. Note that we have similar results for cohomology theories with the cochain
complexCn(X)=Hn(Kn,Kn−1).

3. Examples of homology theories on E(2)

3.1. Sequential homology

By a locally finite matrixwe mean an infinite integer matrix with rows and columns
indexed by elements ofN such that each row and each column contains only a finite number
of nonzero entries (see [6]). We will denote the ring of locally finite matrices byR. We
can also considerR as an endomorphism ring in the category of external Abelian groups.
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Definition 3.1. LetG be an Abelian group. AnexternologyonG is a nonempty collection
ε of subgroups ofG satisfying:

(E1) if E1,E2 ∈ ε thenE1 ∩E2 ∈ ε,
(E2) if E ∈ ε, U <G andE <U thenU ∈ ε.
An external Abelian group(G, ε) consists of an Abelian groupG together with an

externologyε. A subgroupE in ε is said to be anexterior subgroupor e-subgroup.
A homomorphismf : (G, ε) → (G′, ε′) is said to beexternal if f−1(E) ∈ ε for all

E ∈ ε′.

The category of external Abelian groups and homomorphisms will be denoted bye-Ab.
One can check thate-Ab is an additive complete and cocomplete category.

Definition 3.2. Given an external Abelian group(G, ε), anexternal baseis a collection of
e-subgroups,β , such that for everye-subgroupE there existsB ∈ β such thatB <E.

We will use the Abelian groupZ = ⊕∞
0 Z provided with the externology consisting

of those subgroupsE < Z such that there existsi ∈ N such that
⊕∞
i Z < E. Hence

{⊕∞
i Z}∞i=0 constitutes an external base for

⊕∞
0 Z.

The elementse0 = (1,0, . . .), e1 = (0,1,0, . . .), . . . clearly generateZ. Taking into
account that an external homomorphisma :Z →G is determined by the images{a(ei)}∞i=0,
one can prove that Home-Ab(Z,Z), with the obvious sum and the composition, andR are
isomorphic as rings.

LetX be an exterior space. We consider the positive chain complex of external Abelian
groups,Ssin• (X), where Ssin

n (X) is the Abelian group of all singularn-chains onX,
provided with the externology whose base is{Ssin

n (E): E is ane-open subset ofX}. One
can check that the singular boundary homomorphismdsin

n :Ssin
n (X)→ Ssin

n−1(X) is external,
for eachn� 0.

Definition 3.3. Let X be an exterior space. We define thesequential chain complexof
R-modules,Sseq• (X), by

S
seq
n (X)= Home-Ab

(
Z, Ssin

n (X)
)
, d

seq
n = (

dsin
n

)
∗.

Given (X,A) an exterior pair, the chain complexSseq• (X,A) is defined bySseq• (X)/

S
seq• (A). Thenth homologyR-module of this chain complex is denoted byH seq

n (X,A),

and it will be called thenth sequential homologyof (X,A). This construction clearly de-
fines, for each integern, a functorH seq

n :E(2) → R-Mod, whereR-Mod denotes the cat-
egory ofR-modules and homomorphisms ofR-modules. The connecting homomorphism
of the exact sequence

0 → Sseq• (A)→ Sseq• (X)→ Sseq• (X,A)→ 0

gives rise to the boundary operator∂seq:H seq
n (X,A)→H

seq
n−1(A).

Theorem 3.4. H = (H seq, ∂seq) is a homology theory onE(2).
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Proof. Axiom (A1) is immediately satisfied. In order to prove axiom (A2), letF : (X×̄I,
A×̄I)→ (Y,B) be a homotopy betweenf andg. We consider

Γ (X,A)n :Ssin
n (X,A)→ Ssin

n+1(X×̄I,A×̄I)
the prism operator [5] and

Ln = Ssin
n+1(F )Γ

(X,A)
n :Ssin

n (X,A)→ Ssin
n+1(Y,B).

It is straightforward to see thatLn is an external homomorphism. Furthermore,L =
{(Ln)∗ :Sseq

n (X,A)→ S
seq
n+1(Y,B)}∞n=0 is a chain homotopyL :Sseq• (f )� Sseq• (g).

Note that

Home-Ab
(
Z, Ssin• (X,A)

)∼= Sseq• (X,A).

Now, let (X,A) be an exterior pair, whereX is an exterior space first countable at
infinity, and supposeU is an open subset ofX such thatClX(U)⊂ IntX(A).We consider
X = E0 ⊃ E1 ⊃ E2 ⊃ · · · ⊃ En ⊃ · · · an exterior base forX. Taking into account that
ClEk (Ek ∩U)⊂ IntEk (Ek ∩A), for eachk we have that the inclusion maps

iEk :
(
Ek − (Ek ∩U), (Ek ∩A)− (Ek ∩U))→ (Ek,Ek ∩A)

induce isomorphisms on the singular homology groups

(iEk )∗ :H sin
n

(
Ek − (Ek ∩U), (Ek ∩A)− (Ek ∩U))→H sin

n (Ek,Ek ∩A).
{Ssin
n (Ek)}∞k=0 and{Ssin

n (Ek,Ek ∩ A)}∞k=0 are external bases forSsin
n (X) andSsin

n (X,A),
respectively, so if we take[σ ] ∈ H seq

n (X,A) represented by the external homomorphism
σ :Z → Ssin

n (X,A), there is an increasing monotone sequence{ϕ(i)}∞i=0 ⊂ N such that
for each l ∈ N and k � ϕ(l), σ (ek) ∈ Ssin

n (El,El ∩ A). If ϕ(l) � k < ϕ(l + 1), then
[σ(ek)] ∈H sin

n (El,El ∩ A) because(dsin
n )∗(σ ) = 0 impliesdsin

n (σ (ek)) = 0. Since(iEl )∗
is an isomorphism, we take[σ̃ (ek)] ∈H sin

n (El − (El ∩U), (El ∩A)− (El ∩U)) verifying
(iEl )∗([σ̃ (ek)]) = [σ(ek)]. It is easy to check that this argument gives us an element
[σ̃ ] ∈ H seq

n (X − U,A − U) such thati∗([σ̃ ]) = [σ ], where i denotes the inclusion
(X− U,A−U)⊂ (X,A). HenceH seq

n (i)= i∗ is an epimorphism. By similar arguments
i∗ is a monomorphism, so (A3) is satisfied.

In order to prove axiom (A4) we will see that

H
seq
n (N)=

{R, if n= 0,

0, otherwise.

Since{N(i)}∞i=0 is an exterior base forN, with N(i)= {k ∈ N: k � i}. Then{Ssin
n (N(i))}∞i=0

is an external base forSn(N), n � 0. Then, using techniques similar to those used to
prove (A3) and taking into account thatH sin

n (N(i))= 0 if n �= 0, we have thatH seq
n (N)=

0 when n �= 0. Now we analyze the caseH seq
0 (N). Since d1 = 0, thenH seq

0 (N) =
Home-Ab(Z, S

sin
0 (N)), butSsin

0 (N)= Z soH seq
0 (N)= Home-Ab(Z,Z)=R. ✷

Singular homology and sequential homology are related to each other.
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Proposition 3.5. There are natural isomorphisms, whereX is in the category of
topological spaces:

(a) H seq
n (X)∼=∏∞

0 H
sin
n (X), if εX = {X}, and

(b) H seq
n (X)∼=⊕∞

0 H
sin
n (X), if ε is the topology ofX.

Proof. (a) In this case the externology onSsin
n (X) is {Ssin

n (X)}. Hence

Home-Ab
(
Z, Ssin

n (X)
) = HomAb

(
Z, Ssin

n (X)
)

∼=
∞∏
0

HomAb
(
Z, Ssin

n (X)
)∼=

∞∏
0

Ssin
n (X).

ThereforeH seq
n (X)∼=∏∞

0 H
sin
n (X).

(b) Since{∅} is an exterior base forX, then {0} is a external base forSsin
n (X). For

each external homomorphisma :Z → Sn(X), there is a nonnegative integerka such that
ak = a(ek)= 0 for all k � ka . ThenSseq

n (X)=⊕∞
0 S

sin
n (X) with dseq

n =⊕∞
0 d

sin
n . ✷

As a consequence, for each compact spaceX, we have that

H
seq
n (Xe)∼=

∞⊕
0

H sin
n (X).

Remark 3.6. The proper homotopy groups introduced by Brown [1] have global versions,
see [8], and one can consider Hurewicz maps from ‘global Brown homotopy groups’ to
sequential homology groups.

3.2. Tubular homology

LetX be an exterior space. The tubular chain complex ofX, Stub• (X), is defined by the
following chain complex of Abelian groups:

Stub
n (X)= Sseq

n−1(X)⊕ Sseq
n (X);

d tub
n (a, x)=

(
d

seq
n−1(a),−dseq

n−1(x)+ a − aSh
)
,

whereSh denotes the locally finite matrix defined bySh(ek)= ek+1, k = 0,1, . . . .
For exterior mapsf :X→ Y, Stub

n (f ) = Sseq
n−1(f ) ⊕ Sseq

n (f ). The nth tubular homol-
ogy groupof X is Hn(Stub• (X)). It will be denoted byH tub

n (X). For exterior pairs(X,A)
we considerStub

n (X,A) = Sseq
n−1(X,A) ⊕ Sseq

n (X,A) with the obvious boundary homo-
morphisms, andH tub

n (X,A) = Hn(S
tub• (X,A)). It is easy to check thatStub• (X,A) ∼=

Stub• (X)/Stub• (A).
Clearly this defines a functorH tub

n :E(2) → Ab for eachn. By similar arguments to those
used forH seq, one can prove without difficulty axioms (A1), (A2) and (A3). In order to
see axiom (A4) we need some previous results. First we will see a relation between tubular
homology and singular homology in terms of the inverse limit and its first derived functor
associated with certain inverse systems of Abelian groups. Recall that if

A0
p0←− A1

p1←−A2
p2←− · · ·
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is an inverse system of Abelian groups and ifd :
∏∞
i=0Ai → ∏∞

i=0Ai is the homomor-
phism defined byd(a0, a1, a2, . . .) = (a0 − p0(a1), a1 − p1(a2), a2 − p2(a3), . . .), then
ker(d)= lim{Ai} and coker(d)= lim1{Ai}. Two important properties of the derived func-
tor lim1, see [3,9], are the following:

– If each projectionpi is an epimorphism, then lim1{Ai} = 0.
– Every short exact sequence of inverse systems,

0 −→ {Ai} −→ {Bi} −→ {Ci} −→ 0,

gives rise to an exact sequence of Abelian groups

0 −→ lim{Ai} −→ lim{Bi} −→ lim{Ci}
−→ lim1{Ai} −→ lim1{Bi} −→ lim1{Ci} −→ 0.

If X is an exterior space which is first countable at infinity andX = E0 ⊃ E1 ⊃ E2 ⊃
· · · ⊃ En ⊃ · · · a fixed countable exterior base, the inclusionsEi+1 ⊂ Ei give rise to the
induced homomorphismpi :H sin

q (Ei+1) → H sin
q (Ei), q � 0 and the inverse system of

Abelian groups{H sin
q (Ei)}.

Proposition 3.7. There is a short exact sequence

0 −→ lim1{H sin
q (Ei)

} α−→H tub
q (X)

β−→ lim
{
Hsinq−1(Ei)

}−→ 0.

Proof. α is defined as follows. We considerϕ :
∏∞
i=0H

sin
q (Ei) → H tub

q (X) defined by
ϕ({[xi]}∞i=0) = [(0, x)], wherex :Z → Sq(X) is given byx(ei) = xi . Sinceϕd = 0 we
have thatϕ induces a homomorphismα : lim1{H sin

q (Ei)} → H tub
q (X) such thatαπ = ϕ,

whereπ denotes the canonical projection.
On the other hand, for eachq-cycle of Stub• (X), (a, x), there exists a monotone

increasing sequence{ni}∞i=0 ⊂ N, with n0 = 0 such that(ak, xk) ∈ Ssin
q−1(Ei)⊕ Ssin

q (Ei),

for all k � ni; hereak andxk denotea(ek) andx(ek), respectively. We defineβ([(a, x)])=
{[ani ]}∞i=0 ∈ lim{H sin

q−1(Ei)}.
The facts thatα is a monomorphism,β an epimorphism and im(α)= ker(β) are routine

and are left as an exercise.✷
Remark 3.8. There is a similar exact sequence for the relative case. If(X,A) is an exterior
pair andX = E0 ⊃ E1 ⊃ E2 ⊃ · · · ⊃ En ⊃ · · · a fixed countable exterior base ofX, there
exists a short exact sequence:

0 −→ lim1{H sin
q (Ei,Ei ∩A)

} α−→H tub
q (X,A)

β−→ lim
{
H sin
q−1(Ei,Ei ∩A)

}−→ 0

for every integerq .
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As a consequence of this proposition we can compute the tubular homology ofN, con-
sidering the exterior base{N(i)}∞i=0, whereN(i)= {k ∈ N: k � i}. The details are left to
the reader.

Corollary 3.9.

H tub
q (N)=

{∏∞
0 Z/

⊕∞
0 Z, if q = 0,

0, otherwise.

Proposition 3.10. LetX be a topological space provided with the externology of all open
subsets. ThenH tub

q (X)= 0, for all q .

Proof. In this case,

Stub
n (X)=

( ∞⊕
0

Ssin
n−1(X)

)
⊕
( ∞⊕

0

Ssin
n (X)

)
with boundary homomorphism

d tub
n

({ai}, {xi})= ({dsin
n−1(ai)}, {−dsin

n (xi)+ ai − ai+1}
)
.

It is not difficult to see that eachq-cycle inStub• (X) is aq-boundary. ✷
In particular, if X is a compact space (for example, the singleton spaceP ), then

H tub
q (Xe)= 0, for all q .
The sequential homology and the tubular homology are related by the following exact

sequence, which is a homology version of the homotopy sequences given in [13,14].

Proposition 3.11. If X is an exterior space there is a long exact sequence

· · · −→H
seq
q+1(X)−→H tub

q+1(X)−→H
seq
q (X)

(Sh)∗-id——−→H
seq
q (X)−→ · · · .

Proof. Notice that the following short sequence is exact:

0 −→ Sseq• (X)+ α−→ Stub
•+1(X)

β−→ Sseq• (X)−→ 0,

whereSseq
n (X)

+ = Sseq
n+1(X) with dseq+

n = −dseq
n+1(X), andStub

•+1(X) denotes the tubular
complex with a dimension shift. On the other handα(x) = (0,−x) and β(a, x) = a.
Observe that the connecting homomorphism is(Sh)∗-id where[x] leads to[x(Sh)−x]. ✷
3.3. Closed tubular homology

LetX be an exterior space. By itsclosed tubular chain complex, Sctu• (X), we mean the
subcomplex ofStub• (X):

Sctu
n (X)=

{
(a, x) ∈ Stub

n (X): a0 = 0
}
.

If f :X→ Y is an exterior map,Sctu
n (f )(a, x)= (Sseq

n−1(f )(a), S
seq
n (f )(x)).
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The nth closed tubular homologyof X is thenth homology of the complexSctu• (X),
and it will be denoted byH ctu

n (X). We can extend this notion to exterior pairs without
problems, giving rise to a new functorH ctu

n :E(2) → Ab, defined for each integern. One
can check axioms (A1), (A2) and (A3). In order to compute the closed tubular homology
of N we give a lim1 − lim relation for exterior spaces which are first countable at infinity.

Proposition 3.12. Let X be an exterior space first countable at infinity andX = E0 ⊃
E1 ⊃E2 ⊃ · · · a fixed countable exterior base. Then there is a short exact sequence:

0 −→ lim1{H sin
q+1(X,Ei)

} α−→H ctu
q (X)

β−→ lim
{
H sin
q (X,Ei)

}−→ 0,

for all q .

Proof. We begin by definingβ. Let (a, x) be a q-cycle of Sctu• (X). Then there is a
monotone increasing sequence{ni}∞i=0 ⊂ N with n0 = 0, such that(ak, xk) ∈ Ssin

q−1(Ei)⊕
Ssin
q (Ei) for all k � ni . We considerzi = x0 + x1 + · · · + xni−1 ∈ Ssin

q (X) and denote its
equivalence class inSsin

q (X,Ei) = Ssin
q (X)/S

sin
q (Ei) by zi . Then we defineβ([(a, x)])=

{[zi]}∞i=0 ∈ lim{H sin
q (X,Ei)}.

On the other hand we also consider the homomorphismϕ :
∏∞
i=0H

sin
q+1(X,Ei) →

H ctu
q (X) given as follows: if {[zi]}∞i=0 ∈ ∏∞

i=0H
sin
q+1(X,Ei) then x ∈ Sseq

q (X), where

x(ei)= xi = dq+1(zi) ∈ Ssin
q (Ei). Thenϕ({[zi]}∞i=0)= [(0, x)]. Sinceϕd = 0 there exists

a unique homomorphismα such thatαπ = ϕ.
We leave the details to the reader.✷

Remark 3.13. There is a similar sequence for the relative case:

0 −→ lim1{H sin
q+1(X,E

′
i )
} α−→H ctu

q (X,A)
β−→ lim

{
H sin
q (X,E

′
i )
}−→ 0,

whereE′
i denotesEi ∩A.

Corollary 3.14.

H ctu
q (N)=

{∏∞
0 Z, if q = 0,

0, otherwise.

There exists a relationship between the tubular, closed tubular and singular homologies.

Proposition 3.15. LetX be an exterior space. There is a long exact sequence

· · · −→H ctu
q (X)−→H tub

q (X)−→H sin
q−1(X)−→H ctu

q−1(X)−→ · · · .

Proof. We only have to take into account that the following sequence of chain complexes
is exact:

0 −→ Sctu• (X)
i−→ Stub• (X)

j−→ Ssin
•−1(X)−→ 0,

wherei is the canonical inclusion andj is defined byj (a, x)= a0. ✷
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Corollary 3.16. If X is a topological space provided with the externology of all open
subsets ofX thenH ctu

n (X)=H sin
n (X).

Hence, ifX is a compact space, thenH ctu
n (Xe)=H sin

n (X). In particular, for the singleton
space one hasH ctu

n (P )=H sin
n (P ). The same holds for the relative case.

3.4. (Co)homology theories onE(2) induced by (co)homology theories onTop(2)

Another example of (co)homology theory is the following. For a given (co)homology
theory onTop(2) in the sense of Eilenberg–Steenrod [5], we have a (co-)homology theory
onE(2) taking into account that there exists a forgetful functorE(2) → Top(2).

3.5. Sequential (co)homology with coefficients in anR-module

Definition 3.17. LetA be an Abelian category with sufficient projectives. We consider the
category of bounded below chain complexes onA, Chbb(A). If f :X→ Y is a chain map
in Chbb(A), thenf is said to be a

– fibration, if eachfn is an epimorphism,
– cofibration, if eachfn is a monomorphism and coker(fn) is projective; and
– weak equivalence, if f induces isomorphisms in homology.

It is well known thatChbb(A), with the fibrations, cofibrations and weak equivalences
given above, has a closed model category structure in the sense of Quillen [15].

Then, if (X,A) is an exterior pair, for the natural inclusioni :Sseq• (A)→ S
seq• (X) we

can construct a commutative square of the form:

cofS
seq• (A)

cofi

pA

cofS
seq• (X)

pX

S
seq• (A)

i
S

seq• (X)

wherecofS
seq• (A), cofS

seq• (X) are cofibrant chain complexes,pA, pX are trivial fibrations
andcofi is a cofibration. We considercofS

seq• (X,A) the coker ofcofi.

Definition 3.18. Let M be a leftR-module. The chain complex

Sseq• (X,A;M)= cofSseq• (X,A)⊗R M

is said to be thesequential chain complex with coefficientsin M of (X,A).

It is easy to check that this construction gives, for each exterior mapf : (X,A) →
(Y,B), a chain mapSseq• (f ;M) :Sseq• (X,A;M)→ S

seq• (Y,B;M) up to homotopy and,
using a sufficiently strong axiom of choice, a functor

H
seq
n (.;M) :E(2) → R-Mod,

as well as a natural transformation∂ :H seq
n (X,A;M)→H

seq
n−1(A;M).
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H
seq
n (X,A;M) will be called thenth sequential homology with coefficientsin M of

(X,A).
Taking into account thatSseq• (X,A) is a pseudoprojective chain complex (that is, for all

n,Sseq
n (X,A) is a projectiveR-module) it is not difficult to prove (and is left as an exercise)

the following result:

Theorem 3.19. Sequential homology with coefficients inM is a homology theory onE(2)

withH seq
0 (N;M)= M.

Remark 3.20. Observe that, in a natural way, we can define sequential cohomology with
coefficients in a leftR-moduleM using the cochain complex HomR-Mod(

cofS
seq• (X,A),

M), giving rise to a cohomology theory onE(2).

4. Applications

4.1. Closed tubular homology and locally finite homology

To compute the cellular closed tubular homology we will use the following:

Proposition 4.1. Let {Xλ}λ∈Λ be a countable family of compact spaces and consider on∐
λ∈ΛXλ ase-open subsets the complements of all closed-compact subsets. Then

H ctu
n

(∐
λ∈Λ

Xλ

)
∼=
∏
λ∈Λ

H sin
n (Xλ).

Proof. The case in whichΛ is finite is straightforward from the properties of a homology
theory onE(2).

Suppose thatΛ= N.We observe that

∞∐
λ=0

Xλ ⊃
∞∐
λ=1

Xλ ⊃
∞∐
λ=2

Xλ ⊃ · · ·

is an infinite countable exterior base for
∐∞
λ=0Xλ. Applying Proposition 3.12 one has the

desired result. ✷
Let ēnλ, ė

n
λ denote ann-cell and its boundary, andenλ = ēnλ − ėnλ. SupposeX is oriented,

that is, we have chosen a generatoranλ for each infinite cyclic groupH sin
n (D

n
λ,S

n−1
λ ) ∼=

H sin
n (ē

n
λ, ė

n
λ). We recalled in Section 1.2.2 that the locally finite homology of a strongly

locally finite CW-complexX is given by the chain complexC lf• (X), defined as:

C
lf
n (X)=

∏
λ∈An

H sin
n

(
Dnλ,S

n−1
λ

)∼=
∏
λ∈An

Z.

Using the excision axiom and the proposition above, for the associated exterior spaceX,
one has a commutative diagram
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H ctu
n (Xn,Xn−1)

∼=

dctu
n

∏
λ∈An H

sin
n (D

n
λ,S

n−1
λ )

−d lf
n

H ctu
n (Xn−1,Xn−2) ∼=

∏
µ∈An−1

H sin
n−1(D

n−1
µ ,Sn−2

µ )

Then one obtains the following:

Theorem 4.2. If X is a strongly locally finite CW-complex, then for each integern its
locally finite homology is isomorphic to its closed tubular homology:

H
lf
n (X)∼=H ctu

n

(
X
)
.

4.2. Tubular homology and end homology

The end homology (cf. Section 1.2.3) of a strongly locally finite CW-complexX is given
by the chain complexC∞• (X), defined as:

C∞
n (X)=

∏
λ∈An

H sin
n

(
Dnλ,S

n−1
λ

)
/
⊕
λ∈An

H sin
n

(
Dnλ,S

n−1
λ

)
,

and from the commutative diagram

H tub
n (Xn,Xn−1)

∼=

d tub
n

∏
λ∈An H

sin
n (D

n
λ,S

n−1
λ )/

⊕
λ∈An H

sin
n (D

n
λ,S

n−1
λ )

−d∞
n

H tub
n (Xn−1,Xn−2) ∼=

∏
µ∈An−1

H sin
n−1(D

n−1
µ ,Sn−2

µ )/
⊕
µ∈An−1

H sin
n−1(D

n−1
µ ,Sn−2

µ )

the following follows.

Theorem 4.3. If X is a strongly locally finite CW-complex, then for each integern its end
homology is isomorphic to its tubular homology:

H∞
n (X)

∼=H tub
n

(
X
)
.

4.3. Comparison of sequential homology with singular, locally finite and end homology

We note that the Abelian groups
⊕∞

0 Z,
∏∞

0 Z and
∏∞

0 Z/
⊕∞

0 Z have the structure of
left R-modules given as follows: An element ofR is given by a locally finite(∞ × ∞)-
matrix and an element of

⊕∞
0 Z can be represented by a(∞×1)-matrix. The action of the

ring on the Abelian group is induced by matrix multiplication, and similarly for the other
Abelian groups.

Given a strongly locally finite CW-complexX, and the associated exterior spaceX, one
has natural isomorphisms

H
seq
n

(
Xn,Xn−1

)⊗R

( ∞⊕
0

Z

)
∼=H sin

n (Xn,Xn−1),
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H
seq
n

(
Xn,Xn−1

)⊗R

( ∞∏
0

Z

)
∼=H lf

n (Xn,Xn−1),

H
seq
n

(
Xn,Xn−1

)⊗R

( ∞∏
0

Z/

∞⊕
0

Z

)
∼=H∞

n (Xn,Xn−1),

that commute with boundary operators. Then one has:

Theorem 4.4. LetX be a strongly locally finite CW-complex. Then for each integern, one
has the following isomorphisms:

(i) H seq
n (X;⊕∞

0 Z)∼=H sin
n (X),

(ii) H seq
n (X;∏∞

0 Z)∼=H lf
n (X),

(iii) H seq
n (X;∏∞

0 Z/
⊕∞

0 Z)∼=H∞
n (X).

Now, using the results of the subsection above, one has:

Corollary 4.5. Let X be a strongly locally finite CW-complex. Then for each integern,
one has the following isomorphisms:

(i) H seq
n (X;∏∞

0 Z)∼=H ctu
n (X),

(ii) H seq
n (X;∏∞

0 Z/
⊕∞

0 Z)∼=H tub
n (X).

4.4. Comparison of sequential cohomology with compact support, singular and end
cohomology

The Abelian groups
⊕∞

0 Z,
∏∞

0 Z and
∏∞

0 Z/
⊕∞

0 Z also have the structure of right
R-module induced by matrix multiplication.

Given a strongly locally finite CW-complexX, one has natural isomorphisms

HomR

(
H

seq
n

(
Xn,Xn−1

)
,

∞⊕
0

Z

)
∼=Hncs(Xn,Xn−1),

HomR

(
H

seq
n

(
Xn,Xn−1

)
,

∞∏
0

Z

)
∼=Hnsing(Xn,Xn−1),

HomR

(
H

seq
n

(
Xn,Xn−1

)
,

∞∏
0

Z/

∞⊕
0

Z

)
∼=H∞

n (Xn,Xn−1),

that commute with boundary operators. Then one has:

Theorem 4.6. LetX be a strongly locally finite CW-complex. Then for each integern, one
has the following isomorphisms:

(i) Hnseq(X;⊕∞
0 Z)∼=Hncs(X),

(ii) Hnseq(X;∏∞
0 Z)∼=Hnsing(X),

(iii) Hnseq(X;∏∞
0 Z/

⊕∞
0 Z)∼=Hn∞(X).
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4.5. Comparison of sequential homology withČech and Steenrod homology

Given a compact metric spaceX, one can consider the open fundamental complex
OFC(X) introduced by Lefschetz [10], which is a strongly locally finite complex. The
sequential homology anďCech homology are related as follows: We can consider the shift
operatorSh:

⊕∞
0 Z →⊕∞

0 Z given bySh(z0, z1, z2, . . .)= (z1, z2, . . .) and id-Shwhich
is an element of the ringR. We take into account the fact that the homology groupHnseq(X)

has the structure of anR-module. It is easy to check the following:

Theorem 4.7. LetX be a compact metric space and consider the exterior spaceOFC(X).
Then

Ȟn(X)∼=
{
x ∈H seq

n (OFC(X))/x(id-Sh)= 0
}
.

With respect to Steenrod homology one has the following:

Theorem 4.8. LetX be a compact metric space and consider the exterior spaceOFC(X).
Then

(i) for any integern, H seq
n+1(OFC(X);∏∞

0 Z)∼=H ctu
n+1(OFC(X))∼= H̃St

n (X),

(ii) for any integern, H seq
n+1(OFC(X);∏∞

0 Z/
⊕∞

0 Z)∼=H tub
n+1(OFC(X))∼=HSt

n (X).

Remark 4.9. Notice thatH ctu
0 (OFC(X))∼=H tub

0 (OFC(X))∼= 0.

4.6. Comparison of sequential cohomology withČech cohomology

Using the notation of the subsection above, one has:

Theorem 4.10. Let X be a compact metric space and consider the exterior space
OFC(X). Then

(i) for any integern, Hn+1
seq (OFC(X);⊕∞

0 Z)∼= ˜̌
H n(X),

(ii) for any integern, Hnseq(OFC(X);∏∞
0 Z/

⊕∞
0 Z)∼= Ȟ n(X).

4.7. Poincaré duality

In the ringR of locally finite matrices one has the transposition antihomomorphism,
which applies a matrixr to its transpose and is denoted byrt . A right R-module also
admits the structure of a leftR-module by the actionr ·m=m · rt .

Theorem 4.11.
LetM be a triangulable, second countable, orientable,n-manifold. Then
(i) Hqseq(M)∼=H seq

n−q(M);
(ii) for any rightR-moduleM,Hqseq(M;M)∼=H seq

n−q(M;M), where in the second part
of the isomorphismM is considered as a leftR-module.
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Proof. Denote byM ′ the dual triangulation of then-manifoldM. Taking into account the
properties of incidence of dual cells one has that the following diagram,

Hrseq(Mr,Mr−1;M) H
seq
n−r (M ′

n−r ,M ′
n−r−1;M)

H r+1
seq (Mr+1,Mr ;M) H

seq
n−r−1(M

′
n−r−1,M ′

n−r−2;M)

which commutes perhaps up to a sign. Therefore one obtains (ii), and forM = R,
(i) follows. ✷
Corollary 4.12. LetM be a triangulable, second countable, orientable,n-manifold. Then

(i) Hqcs(M)∼=Hqseq(M;⊕∞
0 Z)∼=H seq

n−q (M;⊕∞
0 Z)∼=H sin

n−q (M),
(ii) Hqsin(M)

∼=Hqseq(M;∏∞
0 Z)∼=H seq

n−q (M;∏∞
0 Z)∼=H lf

n−q(M),
(iii) Hq∞(M)∼=Hqseq(M;∏∞

0 Z/
⊕∞

0 Z)∼=H seq
n−q(M;∏∞

0 Z/
⊕∞

0 Z)∼=H∞
n−q (M).
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