Cambios conformes en variedades casi contacto. Variedades localmente conforme almost co-kahler

  1. Juan Carlos Marrero González
Dirixida por:
  1. Domingo Chinea Miranda Director

Universidade de defensa: Universidad de La Laguna

Ano de defensa: 1990

Tribunal:
  1. Luis Angel Cordero Rego Presidente/a
  2. Manuel de León Rodríguez Secretario/a
  3. María Dolores Monar Hernández Vogal
  4. Juan Margalef Roig Vogal
  5. José Antonio Oubiña Galiñanes Vogal
Departamento:
  1. Matemáticas, Estadística e Investigación Operativa

Tipo: Tese

Teseo: 26013 DIALNET

Resumo

EN LA MEMORIA SE REALIZA UN ESTUDIO SISTEMATICO Y PROFUNDO DE LOS CAMBIOS CONFORMES DE ESTRUCTURAS CASI CONTACTO METRICAS, INSISTIENDO EN PARTICULAR EN LAS PROPIEDADES DE LAS VARIEDADES LOCALMENTE CONFORMES A VARIEDADES CO-KAHLER Y ALMOST CO-KAHLER (LAS CUALES SE PUEDE DECIR QUE SON LAS VERSIONES EN DIMENSION IMPAR DE LAS VARIEDADES KAHLER Y ALMOST KAHLER, RESPECTIVAMENTE), EN EL CAPITULO I SE EXPONEN LOS RESULTADOS MAS IMPORTANTES DE LAS VARIEDADES CASI CONTACTO, CASI COMPLEJA, CASI SIMPLECTICA Y CASI COSIMPLECTICA, ASI COMO DE SUBVARIEDADES QUE SE UTILIZARAN EN EL RESTO DE LA MEMORIA. EN EL CAPITULO II ESTUDIA LA INFLUENCIA DE UN CAMBIO CONFORME SOBRE CLASES DE VARIEDADES CASI CONTACTO METRICAS. SE DAN TAMBIEN LA NATURALEZA LOCAL DE LAS VARIEDADES DE CLASE C5 , C6 Y TRANS-SASAKIANAS. EL CAPITULO III SE DEDICA AL ESTUDIO DE LAS VARIEDADES LOCAMENTE CONFORME (ALMOST) CO-KAHLER. EN EL CAPITULO IV SE ESTUDIAN UN TIPO ESPECIAL DE VARIEDADES LOCALMENTE CONFORMES CO-KAHLER, LAS DENOMINADAS P.C-K-VARIEDADES. EN ESTE CAPITULO SE OBTIENE EL REVESTIMIENTO UNIVERSAL DE UNA P.C.K.-VARIEDAD CONEXA Y COMPLETA. FINALMENTE, EN EL CAPITULO V SE DESCRIBEN NUMEROSOS EJEMPLOS, LOS CUALES ILUSTRAN DIVERSOS ASPECTOS DEL ESTUDIO TEORICO REALIZADO.