La transformación integral y la convolución de Hankel de funciones y distribuciones

  1. Lourdes Rodríguez Mesa
Dirixida por:
  1. Jorge Juan Betancor Pérez Director

Universidade de defensa: Universidad de La Laguna

Ano de defensa: 1997

Tribunal:
  1. José Manuel Méndez Pérez Presidente
  2. María Isabel Marrero Rodríguez Secretaria
  3. Joan Cerdà Martín Vogal
  4. Félix López Fernández-Asenjo Vogal
  5. Angel Rodríguez Palacios Vogal
Departamento:
  1. Análisis Matemático

Tipo: Tese

Resumo

EN LA TESIS SE INVESTIGA LA CONVERGENCIA PUNTUAL DE LAS INTEGRALES PARCIALES DE HANKEL, SE INTRODUCEN LOS LLAMADOS ESPACIOS DE LIPSCHITZ-HANKEL Y DE BESOV-HANKEL, QUE SON CARACTERIZADOS MEDIANTE LAS INTEGRALES PARCIALES DE HANKEL Y LAS MEDIAS DE BOCHNER-RIESZ. SE DISCUTE LA INTEGRABILIDAD DE LAS TRANSFORMADAS DE HANKEL DE FUNCIONES EN OPORTUNOS ESPACIOS DE LIPSCHITZ-HANKEL. SE ANALIZA EL COMPORTAMIENTO DE LA TRANSFORMACION Y LA CONVOLUCION DE HANKEL SOBRE DISTRIBUCIONES DE CRECIMIENTO EXPONENCIAL. SE CONSIDERAN LAS ECUACIONES DE CONVOLUCION HANKEL EN ESPACIOS DE FUNCIONES GENERALIZADAS DE CRECIMIENTO LENTO Y EXPONENCIAL, INTRODUCIENDO EL CONCEPTO DE HIPOELIPTICIDAD PARA LOS OPERADORES DE CONVOLUCION HANKEL Y CARACTERIZANDOLO A TRAVES DEL CRECIMIENTO DE LA TRANSFORMADA DE HANKEL DE TALES OPERADORES. SE INTRODUCEN NUEVOS ESPACIOS DE DISTRIBUCIONES TRANSFORMABLES HANKEL, QUE SON IDENTIFICADOS CON CIERTA CLASE DE OPERADORES QUE CONMUTAN CON LA CONVOLUCION DE HANKEL.