Hacia la educación del futuroEl pensamiento computacional como mecanismo de aprendizaje generativo

  1. SEGREDO, Eduardo 1
  2. MIRANDA, Gara 1
  3. LEÓN, Coromoto 1
  1. 1 Universidad de La Laguna
    info

    Universidad de La Laguna

    San Cristobal de La Laguna, España

    ROR https://ror.org/01r9z8p25

Revista:
Education in the knowledge society (EKS)

ISSN: 2444-8729 1138-9737

Año de publicación: 2017

Volumen: 18

Número: 2

Páginas: 33-58

Tipo: Artículo

DOI: 10.14201/EKS2017182335 DIALNET GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: Education in the knowledge society (EKS)

Resumen

La transformación de la educación tradicional en una educación “SMART” (del inglés, “Sensitive, Manageable, Adaptable, Responsive and Timely”) implica la modernización integral de todos los procesos educativos. Para dicha transformación, la incorporación de nuevas pedagogías se vuelve imprescindible a nivel metodológico, mientras que el uso de entornos interactivos e inteligentes de aprendizaje supone un hito fundamental a nivel tecnológico. En cualquier caso, el objetivo último de esta transformación es formar y transformar a los estudiantes del futuro para que desarrollen habilidades del siglo XXI y puedan convertirse así en ciudadanos de nuestro mundo en continuo cambio. La tecnología y las computadoras son un aspecto esencial para esta modernización, no solo en términos de soporte tecnológico, sino también en términos de ofrecer nuevas metodologías para el desarrollo de nuevas pedagogías y habilidades. En este contexto, el pensamiento computacional aparece como un mecanismo prometedor para fomentar estas nuevas competencias básicas, ya que ofrece herramientas que se ajustan a los intereses del alumnado y les da la posibilidad de comprender mejor los fundamentos de nuestra sociedad y de los entornos basados en las Tecnologías de la Información y la Comunicación (TIC). En este trabajo, planteamos la necesidad de realizar un esfuerzo para fomentar el desarrollo del pensamiento computacional como una oportunidad para transformar las pedagogías tradicionales en metodologías adaptadas al futuro. Además, presentamos una visión general sobre el pensamiento computacional y analizamos el estado actual de la educación “SMART”, haciendo hincapié en la falta de metodologías que permitan apoyar esta transición. Por último, proporcionamos —a aquellos educadores interesados en conseguir un cambio real— información sobre iniciativas dedicadas a la difusión o promoción del pensamiento computacional; herramientas o materiales de apoyo para el desarrollo del pensamiento computacional entre los estudiantes; así como una síntesis de las experiencias y los resultados existentes en relación a la aplicación del pensamiento computacional en entornos educativos.

Referencias bibliográficas

  • A Framework for K-12 Science Education: Practices, Crosscutting Concepts, and Core Ideas. (2012). Washington, D.C.: National Academies Press. Retrieved from http://nap.edu/catalog/13165
  • Abelson, H. & Friedman, M. (2010). App Inventor--A view into learning about computers through building mobile applications. In Proceedings of the 2010 SIGCSE Symposium.
  • AgentCubes. (2016). Retrieved 25 September 2016, from http://www.agentcubes.com/
  • AgentSheets. (2016). Retrieved 25 September 2016, from http://www.agentsheets.com/index.html
  • Alice. (2016). Retrieved 23 September 2016, from http://www.alice.org/index.php
  • Barr, V., & Stephenson, C. (2011). Bringing Computational Thinking to K-12: What is Involved and What is the Role of the Computer Science Education Community? ACM Inroads, 2(1), 48-54. http://dx.doi.org/10.1145/1929887.1929905
  • Bau, D., & Bau, D. A. (2014). A Preview of Pencil Code: A Tool for Developing Mastery of Programming. In Proceedings of the 2nd Workshop on Programming for Mobile & Touch (pp. 21-24). New York, NY, USA: ACM. http://dx.doi.org/10.1145/2688471.2688481
  • Bau, D., Bau, D. A., Dawson, M., & Pickens, C. S. (2015). Pencil Code: Block Code for a Text World. In Proceedings of the 14th International Conference on Interaction Design and Children (pp. 445-448). New York, NY, USA: ACM. http://dx.doi.org/10.1145/2771839.2771875
  • BlueJ. (2016). Retrieved 25 September 2016, from http://bluej.org/
  • Brennan, K., & Resnick, M. (2012). New frameworks for studying and assessing the development of computational thinking. Presented at the Annual American Educational Research Association Meeting, Vancouver, Canada. Retrieved from http://web.media.mit.edu/~kbrennan/files/Brennan_Resnick_AERA2012_CT.pdf
  • Brown, N., Stevens, P., & Kölling, M. (2010). Greenroom: A Teacher Community for Collaborative Resource Development. In Proceedings of the Fifteenth Annual Conference on Innovation and Technology in Computer Science Education (pp. 305-305). New York, NY, USA: ACM. http://dx.doi.org/10.1145/1822090.1822181
  • Brown, Q., Mongan, W., Kusic, D., Garbarine, E., Fromm, E., & Fontecchio, A.(2008). Computer Aided Instruction as a Vehicle for Problem Solving: Scratch Boards in the Middle Years Classroom. Presented at the 2008 Annual Conference & Exposition. Retrieved from https://peer.asee.org/computer-aidedinstruction-as-a-vehicle-for-problem-solving-scratch-boards-in-the-middle-years-classroom
  • Chu, H.-C., Hwang, G.-J., & Tsai, C.-C. (2010). A knowledge engineering approach to developing mindtools for context-aware ubiquitous learning. Computers & Education, 54(1), 289-297. http://dx.doi.org/10.1016/j.compedu.2009.08.023
  • Clements, D. H. (1987). Longitudinal Study of the Effects of Logo Programming on Cognitive Abilities and Achievement. Journal of Educational Computing Research, 3(1), 73-94. http://dx.doi.org/10.2190/RCNV-2HYF-60CM-K7K7
  • Clements, D. H., & Gullo, D. F. (1984). Effects of computer programming on young children’s cognition. Journal of Educational Psychology, 76(6), 1051-1058. http://dx.doi.org/10.1037/0022-0663.76.6.1051
  • Coccoli, M., Guercio, A., Maresca, P., & Stanganelli, L. (2014). Smarter universities: A vision for the fast changing digital era. Journal of Visual Languages & Computing, 25(6), 1003-1011. http://dx.doi.org/10.1016/j.jvlc.2014.09.007
  • Code.org. (2016). Retrieved 26 September 2016, from https://code.org/
  • CoffeeScript. (2016). Retrieved 25 September 2016, from http://coffeescript.org/Computer Science For All. (2016, January 30). Retrieved 29 September 2016, from https://www.whitehouse.gov/blog/2016/01/30/computer-science-all
  • Conway, M., Pausch, R., Gossweiler, R., & Burnette, T. (1994). Alice: A Rapid Prototyping System for Building Virtual Environments. In Proceedings of Conference Companion on Human Factors in Computing Systems (pp. 295-296). New York, NY, USA: ACM. http://dx.doi.org/10.1145/259963.260503
  • Cooper, S., Dann, W., & Pausch, R. (2000). Alice: A 3-D Tool for Introductory Programming Concepts. Journal of Computing in Small Colleges, 15(5), 107-116.
  • Ferrer-Mico, T., Prats-Fernàndez, M. À., & Redo-Sanchez, A. (2012). Impact of Scratch Programming on Students’ Understanding of Their Own Learning Process. Procedia - Social and Behavioral Sciences, 46, 1219-1223. http://dx.doi.org/10.1016/j.sbspro.2012.05.278
  • Fincher, S., & Utting, I. (2010). Machines for Thinking. Trans. Comput. Educ., 10(4), 13:1-13:7. http://dx.doi.org/10.1145/1868358.1868360
  • Fiorella, L., & Mayer, R. E. (2014). Learning as a Generative Activity: Eight Learning Strategies that Promote Understanding. Cambridge University Press. Retrieved from http://www.cambridge.org/es/academic/subjects/psychology/educational-psychology/learning-generative-activity-eight-learningstrategies-promote-understanding?format=AR&isbn=9781316258576#contentsTabAnchor
  • Futschek, G. (2006). Algorithmic Thinking: The Key for Understanding Computer Science. In R. T. Mittermeir (Ed.), Informatics Education - The Bridge between Using and Understanding Computers (pp. 159-168). Berlin Heidelberg: Springer. http://dx.doi.org/10.1007/11915355_15
  • García-Peñalvo, F. J. (2016a). A brief introduction to TACCLE 3 - coding European project. In 2016 International Symposium on Computers in Education (SIIE) (pp. 1-4). http://dx.doi.org/10.1109/SIIE.2016.7751876
  • García-Peñalvo, F. J. (2016b). What Computational Thinking Is. Journal of Information Technology Research, 9(3), v-viii.
  • Google CS First. (2016). Retrieved 29 September 2016, from https://www.cs-first.com/
  • Google for Education. (2016). Retrieved 29 September 2016, from www.google.com/edu/resources/programs/exploring-computational-thinking/
  • Gradel, K., Edson, A. J., Gradel, K., & Edson, A. J. (2011). Cooperative Learning: Smart Pedagogy and Tools for Online and Hybrid Courses. Journal of Educational Technology Systems, 39(2), 193-212. http://dx.doi.org/10.2190/ET.39.2.i
  • Greenfoot. (2016). Retrieved 25 September 2016, from http://www.greenfoot.org/door
  • Greenstein, L. M. (2012). Assessing 21st Century Skills: A Guide to Evaluating Mastery and Authentic Learning (1st edition). Thousand Oaks: Corwin.
  • Grover, S., & Pea, R. (2013). Computational Thinking in K-12 A Review of the State of the Field. Educational Researcher, 42(1), 38-43. http://dx.doi.org/10.3102/0013189X12463051
  • Gülbahar, Y., & Kalelio?lu, F. (2014). The Effects of Teaching Programming via Scratch on Problem Solving Skills: A Discussion from Learners’ Perspective. Informatics in Education, 13(1), 33-50.
  • Harvey, B., Garcia, D. D., Barnes, T., Titterton, N., Miller, O., Armendariz, D., Paley, J. (2014). Snap! (Build Your Own Blocks). In Proceedings of the 45th ACM Technical Symposium on Computer Science Education (pp. 749-749). New York, NY, USA: ACM. http://dx.doi.org/10.1145/2538862.2539022
  • Henriksen, P., & Kölling, M. (2004). Greenfoot: Combining Object Visualisation with Interaction. In Companion to the 19th Annual ACM SIGPLAN Conference on Object-oriented Programming
  • Systems, Languages, and Applications (pp. 73-82). New York, NY, USA: ACM. http://dx.doi.org/10.1145/1028664.1028701
  • Hwang, G.-J. (2014). Definition, framework and research issues of smart learning environments - a context-aware ubiquitous learning perspective. Smart Learning Environments, 1, Article 4. https://doi.org/10.1186/s40561-014-0004-5
  • Ioannidou, A., Repenning, A., & Webb, D. C. (2009). AgentCubes: Incremental 3D end-user development. Journal of Visual Languages & Computing, 20(4), 236-251. https://doi.org/10.1016/j.jvlc.2009.04.001
  • Jonassen, D. H. (2000). Computers as Mindtools for Schools, Engaging Critical Thinking. Upper Saddle River, New Jersey: Prentice-Hall.
  • Jonassen, D. H. (2010). Learning to Solve Problems: A Handbook for Designing Problem-Solving Learning Environments. New York, USA: Taylor & Francis.
  • Jonassen, D. H. (2014). Mindtools (Productivity and Learning). In R. Gunstone (Ed.), Encyclopedia of Science Education (pp. 1-7). Netherlands: Springer. https://doi.org/10.1007/978-94-007-6165-0_57-1
  • Jonassen, D. H., Carr, C., & Yueh, H.-P. (1998). Computers as Mindtools for Engaging Learners in Critical Thinking. TechTrends, 43(2), 24-32. https://doi.org/10.1007/BF02818172
  • Kafai, Y. B., & Burke, Q. (2013). Computer Programming Goes Back to School. Phi Delta Kappan, 95(1), 61-65. https://doi.org/10.1177/003172171309500111
  • Kelleher, C., & Pausch, R. (2005). Lowering the Barriers to Programming: A Taxonomy of Programming Environments and Languages for Novice Programmers. ACM Comput. Surv., 37(2), 83-137. https://doi.org/10.1145/1089733.1089734
  • Kelleher, C., & Pausch, R. (2007). Using Storytelling to Motivate Programming. Commun. ACM, 50(7), 58-64. https://doi.org/10.1145/1272516.1272540
  • Kirschner, P., & Wopereis, I. G. J. H. (2003). Mindtools for teacher communities: A European perspective. Technology, Pedagogy and Education, 12(1), 105-124. https://doi.org/10.1080/14759390300200148
  • Kölling, M. (2008a). Greenfoot: A Highly Graphical Ide for Learning Object-oriented Programming. In Proceedings of the 13th Annual Conference on Innovation and Technology in Computer Science Education (pp. 327-327). New York, NY, USA: ACM. https://doi.org/10.1145/1384271.1384370
  • Kölling, M. (2008b). Using BlueJ to Introduce Programming. In J. Bennedsen, M. E. Caspersen, & M. Kölling (Eds.), Reflections on the Teaching of Programming (pp. 98-115). Berlin Heidelberg: Springer. https://doi.org/10.1007/978-3-540-77934-6_9
  • Kölling, M. (2010). The Greenfoot Programming Environment. Trans. Comput. Educ., 10(4), 14:1-14:21. https://doi.org/10.1145/1868358.1868361
  • Llorens-Largo, F. (2015). Dicen por ahí. . . que la nueva alfabetización pasa por la programación. ReVisión, 8(2), 11-14.
  • Looking Glass. (2016). Retrieved 23 September 2016, from https://lookingglass.wustl.edu/
  • Lye, S. Y., & Koh, J. H. L. (2014). Review on teaching and learning of computational thinking through programming: What is next for K-12? Computers in Human Behavior, 41, 51-61. https://doi.org/10.1016/j.chb.2014.09.012
  • Maiorana, F., Giordano, D., & Morelli, R. (2015). Quizly: A live coding assessment platform for App Inventor. In 2015 IEEE Blocks and Beyond Workshop (pp. 25-30). https://doi.org/10.1109/BLOCKS.2015.7368995
  • Maloney, J. H., Peppler, K., Kafai, Y., Resnick, M., & Rusk, N. (2008). Programming by Choice: Urban Youth Learning Programming with Scratch. In Proceedings of the 39th SIGCSE Technical Symposium on Computer Science Education (pp. 367-371). New York, NY, USA: ACM. http://dx.doi.org/10.1145/1352135.1352260
  • Maloney, J., Resnick, M., Rusk, N., Silverman, B., & Eastmond, E. (2010). The Scratch Programming Language and Environment. Trans. Comput. Educ., 10(4), 16:1-16:15. https://doi.org/10.1145/1868358.1868363
  • Miller, R. B., Kelly, G. N., & Kelly, J. T. (1988). Effects of Logo computer programming experience on problem solving and spatial relations ability. Contemporary Educational Psychology, 13(4), 348-357. https://doi.org/10.1016/0361-476X(88)90034-3
  • Mind Tools: Essential Skills for an Excellent Career. (2016). Retrieved 29 September 2016, from http://www.mindtools.com/
  • MIT App Inventor. (2016). Retrieved 23 September 2016, from http://appinventor.mit.edu/explore/
  • Nastasi, B. K., Clements, D. H., & Battista, M. T. (1990). Social-cognitive interactions, motivation, and cognitive growth in Logo programming and CAI problem-solving environments. Journal of Educational Psychology, 82(1), 150-158. https://doi.org/10.1037/0022-0663.82.1.150
  • North Central Regional Educational Laboratory and Metiri Group. (2003). 21st Century Skills: Literacy in the Digital Age. Retrieved from http://pict.sdsu.edu/engauge21st.pdf
  • Organisation for Economic Co-Operation and Development. (2009). 21st Century Skills and Competences for New Millennium Learners in OECD Countries (EDU Working paper No. 41). Retrieved from http://www.oecd.org/officialdocuments/publicdisplaydocumentpdf/?cote=EDU/WKP(2009)20&doclanguage=en
  • Papert, S. (1980). Mindstorms: Children, Computers, and Powerful Ideas. New York, NY, USA: Basic Books, Inc.
  • Pencil Code. (2016). Retrieved 25 September 2016, from https://pencilcode.net/
  • Ralston, A., Reilly, E. D., & Hemmendinger, D. (2000). Encyclopedia of Computer Science (4th ed.). Hoboken, NJ, USA: Wiley.
  • Repenning, A. (1993). Agentsheets: A Tool for Building Domain-oriented Visual Programming Environments. In Proceedings of the INTERACT ’93 and CHI ’93 Conference on Human Factors in Computing Systems (pp. 142-143). New York, NY, USA: ACM. http://dx.doi.org/10.1145/169059.169119
  • Repenning, A., & Ioannidou, A. (2006). AgentCubes: Raising the Ceiling of End-User Development in Education through Incremental 3D. In Visual Languages and Human-Centric Computing (VL/HCC’06) (pp. 27-34). https://doi.org/10.1109/VLHCC.2006.7
  • Resnick, M., Maloney, J., Monroy-Hernández, A., Rusk, N., Eastmond, E., Brennan, K., Kafai, Y. (2009). Scratch: Programming for All. Commun. ACM, 52(11), 60-67. https://doi.org/10.1145/1592761.1592779
  • Rick, D., Ludwig, J., Meyer, S., Rehder, C., & Schirmer, I. (2010). Introduction to Business Informatics with Greenfoot Using the Example of Airport Baggage Handling. In Proceedings of the 10th Koli Calling International Conference on Computing Education Research (pp. 68-69). New York, NY, USA: ACM. https://doi.org/10.1145/1930464.1930474
  • Ritchie, D., & Volkl, C. (2000). Effectiveness of Two Generative Learning Strategies in the Science Classroom. School Science and Mathematics, 100(2), 83-89. https://doi.org/10.1111/j.1949-8594.2000.tb17240.x
  • Roscoe, J. F., Fearn, S., & Posey, E. (2014). Teaching Computational Thinking by Playing Games and Building Robots. In 2014 International Conference on Interactive Technologies and Games (iTAG) (pp.9-12). https://doi.org/10.1109/iTAG.2014.15
  • Salomon, G. (2016). It’s Not Just the Tool but the Educational Rationale that Counts. In E. Elstad (Ed.), Educational Technology and Polycontextual Bridging (pp. 149-161). Rotterdam, The Netherlands: SensePublishers. https://doi.org/10.1007/978-94-6300-645-3_8
  • Sampson, D., & Karagiannidis, C. (2002). Personalised Learning: Educational, Technological and Standardisation Perspective. Interactive Educational Multimedia, 4, 24-39.
  • Smith, D. C., Cypher, A., & Tesler, L. (2000). Programming by Example: Novice Programming Comes of Age. Commun. ACM, 43(3), 75-81. https://doi.org/10.1145/330534.330544
  • Snap! (Build Your Own Blocks) 4.0. (2016). Retrieved 29 September 2016, from http://snap.berkeley.edu/
  • Statz, J. (1973). The Development Of Computer Programming Concepts And Problem-Solving Abilities Among Ten-Year-Olds Learning Logo. Electrical Engineering and Computer Science - Dissertations. Retrieved from http://surface.syr.edu/eecs_etd/256
  • Tabet, N., Gedawy, H., Alshikhabobakr, H., & Razak, S. (2016). From Alice to Python. Introducing Textbased Programming in Middle Schools. In Proceedings of the 2016 ACM Conference on Innovation and Technology in Computer Science Education (pp. 124-129). New York, NY, USA: ACM. https://doi.org/10.1145/2899415.2899462
  • Tikhomirov, V., & Dneprovskaya, N. (2015). Development of strategy for smart University. In Open Education Global International Conference. Banff, Canada. Transforming American education: Learning powered by technology. (2010).(National Educational Technology Plan). Retrieved from https://www.ed.gov/sites/default/files/NETP-2010-final-report.pdf
  • Trilling, B., & Fadel, C. (2012). 21st Century Skills: Learning for Life in Our Times (1st Ed.). San Francisco: John Wiley & Sons Inc.
  • Utting, I., Cooper, S., Kölling, M., Maloney, J., & Resnick, M. (2010). Alice, Greenfoot, and Scratch - A Discussion. Trans. Comput. Educ., 10(4), 17:1-17:11. https://doi.org/10.1145/1868358.1868364
  • UVa User Interface Group. (1995). Alice: Rapid Prototyping for Virtual Reality. IEEE Comput. Graph. Appl., 15(3), 8-11. https://doi.org/10.1109/38.376600
  • Weintrop, D. (2015). Blocks, text, and the space between: The role of representations in novice programming environments. In 2015 IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC) (pp. 301-302). https://doi.org/10.1109/VLHCC.2015.7357237
  • Wing, J. M. (2006). Computational Thinking. Commun. ACM, 49(3), 33-35. https://doi.org/10.1145/1118178.1118215
  • Xie, B., Shabir, I., & Abelson, H. (2015). Measuring the Usability and Capability of App Inventor to Create Mobile Applications. In Proceedings of the 3rd International Workshop on Programming for Mobile and Touch (pp. 1-8). New York, NY, USA: ACM. https://doi.org/10.1145/2824823.2824824
  • Zhu, Z.-T., & He, B. (2012). Smart Education: new frontier of educational informatization. E-Education Research, 12, 1-13.
  • Zhu, Z.-T., Yu, M.-H., & Riezebos, P. (2016). A research framework of smart education. Smart Learning Environments, 3(1), Article 4. http://dx.doi.org/10.1186/s40561-016-0026-2