Modelado y control de turbinas eólicas marinas flotantes

  1. Tomás-Rodríguez, M. 1
  2. Santos, M. 2
  1. 1 City, University of London
  2. 2 Universidad Complutense de Madrid
    info

    Universidad Complutense de Madrid

    Madrid, España

    ROR 02p0gd045

Revista:
Revista iberoamericana de automática e informática industrial ( RIAI )

ISSN: 1697-7920

Año de publicación: 2019

Volumen: 16

Número: 4

Páginas: 381-390

Tipo: Artículo

DOI: 10.4995/RIAI.2019.11648 DIALNET GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: Revista iberoamericana de automática e informática industrial ( RIAI )

Resumen

En este tutorial se aborda el tema del modelado y control de las turbinas eólicas marinas flotantes. En primer lugar se describen estos sistemas de extracción de energía eólica que están situados en alta mar, en aguas profundas, y se comentan algunas aproximaciones a su modelado. El control de potencia de estas turbinas es presentado con detalle, explicando los distintos tipos de control que buscan maximizar la obtención de energía. Se resalta el problema de la inducción de dinámicas inestables en la plataforma flotante debido al control del rotor del aerogenerador, una dificultad que no aparece en otros tipos de turbinas. La reducción de las vibraciones mediante estrategias de control estructural se ilustra con un ejemplo, usando un dispositivo pasivo que es complementado con un mecanismo denominado inerter, mostrando con resultados de simulación cómo se consiguen eliminar las oscilaciones de la turbina flotante. Este ejemplo está basado en resultados preliminares obtenidos en la investigación que llevan a cabo los autores de este tutorial.

Referencias bibliográficas

  • Bianchi, F. D., De Battista, H., & Mantz, R. J. (2006). Wind turbine control systems: principles, modelling and gain scheduling design. Springer Science & Business Media.
  • Carter, D.J.T. (1982). Prediction of wave height and period for a constant wind velocity using the JONSWAP results. Ocean Engineering, 9(1), 17-33. https://doi.org/10.1016/0029-8018(82)90042-7
  • García, E., Correcher, A., Quiles, E., Morant, F. 2016. Renewable energy resources of the marine environment and its control requirements. RIAI Revista Iberoamericana de Automática e Informática Industrial, 13(2):141-161. https://doi.org/10.1016/j.riai.2016.03.002
  • González-Rodríguez, A.G., González-Rodríguez, A., Chacón, J.M., Castillo, F.J. 2017. Wide frequency vibration absorber based on a new adjustable-stiffness leaf spring. Revista Iberoamericana de Automática e Informática Industrial, 14(2), 163-173, doi: https://doi.org/10.1016/j.riai.2016.11.005
  • Hu, Y., Wang, J., Chen, M.Z., Li, Z. and Sun, Y., 2018. Load mitigation for a barge-type floating offshore wind turbine via inerter-based passive structural control. Engineering Structures, 177, pp.198-209. https://doi.org/10.1016/j.engstruct.2018.09.063
  • Hywind Offshore Wind. Statoil (2019). http://www.offshorewind.biz/2014/07/09/statoil-signs-hywind-deal-with-aibel/
  • Jin, X., Xie, S., He, J., Lin, Y., Wang, Y. and Wang, N., 2018. Optimization of tuned mass damper parameters for floating wind turbines by using the artificial fish swarm algorithm. Ocean Engineering, 167, pp.130-141. https://doi.org/10.1016/j.oceaneng.2018.08.031
  • Jonkman, J. M. 2007. Dynamics modeling and loads analysis of an offshore floating wind turbine. No. NREL/TP-500-41958, National Renewable Energy Lab (NREL), Golden, University of Colorado. https://doi.org/10.2172/921803
  • Jonkman, J. M. 2008. Influence of control on the pitch damping of a floating wind turbine. ASME Wind Energy Symposium, Reno, Nevada, Jan 7-10. https://doi.org/10.2514/6.2008-1306
  • Jonkman, J., Matha, D. 2009. A quantitative comparison of the responses of three floating platform concepts. In: European Offshore Wind Conference And Exhibition. Stockholm (Sweden). (No. NREL/CP-500-46726).
  • Jose, A., Falzarano, J., Wang, H. (2018). A study of negative damping in floating wind turbines using coupled program FAST-SIMDYN. In ASME 2018 1st Int. Offshore Wind Technical Conf. (pp. V001T01A036-V001T01A036). American Society of Mechanical Engineers. https://doi.org/10.1115/IOWTC2018-1112
  • Knudsen, T., Bak, T., Svenstrup, M. (2015). Survey of wind farm control-power and fatigue optimization. Wind Energy, 18(8), 1333-1351. https://doi.org/10.1002/we.1760
  • Lackner, M.A., Rotea, M.A. 2011. Structural control of floating wind turbines. Mechatronics, 21(4), pp.704-719. https://doi.org/10.1016/j.mechatronics.2010.11.007
  • Larsen, T.J., Hanson, T.D. 2007. A method to avoid negative damped low frequent tower vibrations for a floating, pitch controlled wind turbine. In Journal of Physics: Conference Series (Vol. 75, No. 1, p. 012073). IOP Publishing. https://doi.org/10.1088/1742-6596/75/1/012073
  • Menezes, E.J.N., Araújo, A.M. and da Silva, N.S.B. 2018. A review on wind turbine control and its associated methods. Journal of Cleaner Production, 174, pp.945-953. https://doi.org/10.1016/j.jclepro.2017.10.297
  • Mikati, M., Santos, M., Armenta, C. (2013). Electric grid dependence on the configuration of a small-scale wind and solar power hybrid system. Renewable energy, 57, 587-593. https://doi.org/10.1016/j.renene.2013.02.018
  • Pérez de la Portilla, M., López Piñeiro, A., Somolinos J.A., Morales, R. (2018) Dynamic modelling and control of a submerged device with hydrostatic actuators. Revista Iberoamericana de Automática e Informática Industrial, 15(1), pp. 12-23, 2018, https://doi.org/10.4995/riai.2017.8824
  • Roddier, D., Cermelli, C., Aubault, A., & Peiffer, A. (2017). Summary and conclusions of the full life-cycle of the WindFloat FOWT prototype project. In ASME 2017 36th Int. Conf. on Ocean, Offshore and Arctic Engineering (pp. V009T12A048-V009T12A048). American Society of Mechanical Engineers. https://doi.org/10.1115/OMAE2017-62561
  • Smith, M.C. 2002. Synthesis of mechanical networks: the inerter. IEEE Transactions on Automatic Control, 47(10), 1648-1662. https://doi.org/10.1109/TAC.2002.803532
  • Soong, T.T., Costantinou, M.C. (2014). Passive and active structural vibration control in civil engineering (Vol. 345). Springer.
  • Stewart, G. M., Lackner, M. A. 2014. The impact of passive tuned mass dampers and wind-wave misalignment on offshore wind turbine loads. Engineering Structures 73, 54-61. https://doi.org/10.1016/j.engstruct.2014.04.045
  • Tomas-Rodríguez, M., Elsaghir, T., Hashi S., Santos, M. 2018. Análisis de vibraciones en turbinas marinas, XXXIX Jornadas de Automática, Badajoz, 5-7, Sept.
  • Wang, C.M., Utsunomiya, T., Wee, S.C., Choo, Y.S. 2010. Research on floating wind turbines: a literature survey. The IES Journal Part A: Civil & Structural Engineering, 3(4), pp.267-277. https://doi.org/10.1080/19373260.2010.517395
  • Wang, X., Zeng, X., Li, J., Yang, X., & Wang, H. (2018). A review on recent advancements of substructures for offshore wind turbines. Energy Conversion and Management, 158, 103-119. https://doi.org/10.1016/j.enconman.2017.12.061
  • Yang, J., He, E.M. and Hu, Y.Q., 2019. Dynamic modeling and vibration suppression for an offshore wind turbine with a tuned mass damper in floating platform. Applied Ocean Research, 83, pp.21-29. https://doi.org/10.1016/j.apor.2018.08.021