Naphthol-derived Betti bases as potential SLC6A14 blockers

  1. Kaylie, Demanuele
  2. Miguel, X. Fernandes
  3. Adrián, Puerta 1
  4. Alexis, R. Galán
  5. Roderick, Abdilla
  6. Giovanna, Bosica
  7. José, M. Padrón 1
  1. 1 Universidad de La Laguna
    info

    Universidad de La Laguna

    San Cristobal de La Laguna, España

    ROR https://ror.org/01r9z8p25

Revista:
Journal of Molecular and Clinical Medicine

ISSN: 2617-5282

Año de publicación: 2020

Volumen: 2

Número: 2

Páginas: 35

Tipo: Artículo

DOI: 10.31083/J.JMCM.2019.02.7181 GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: Journal of Molecular and Clinical Medicine

Resumen

A rapid route for obtaining unsymmetrical 1,2-dihydropyridines (1,2-DHPs) as opposed to 1,4-dihydropyridines (1,4-DHPs) has been achieved via a one-pot multicomponent Hantzsch reaction. A benign protocol has been developed for the preparation of various 1,2-dihydropyridine derivatives using heterogenized phosphotungstic acid on alumina support (40 wt %). High yields of over 75% have been accomplished in just 2–3.5 h after screening several heterogeneous catalysts and investigating the optimal reaction conditions. The catalyst chosen has passed the heterogeneity test and was shown to have the potential of being reused for up to 8 consecutive cycles before having a significant loss in activity. In addition, aromatic aldehydes gave the aforementioned regioisomer while the classical 1,4-DHPs were obtained when carrying out the reaction using aliphatic aldehydes. The preliminary study of the antiproliferative activity against human solid tumor cells demonstrated that 1,2-DHPs could inhibit cancer cell growth in the low micromolar range.

Referencias bibliográficas

  • Dömling, A.; AlQahtani, A. D. General Introduction to MCRs: Past, Present, and Future. In Multicomponent Reactions in Organic Synthesis; Zhu, J.; Wang, Q.; Wang, M.-X., Eds.; Wiley-VCH: Weinheim, Germany, 2014; pp 1–12. doi:10.1002/9783527678174.ch01
  • Ganem, B. Acc. Chem. Res. 2009, 42, 463–472. doi:10.1021/ar800214s
  • Alvim, H. G. O.; da Silva Júnior, E. N.; Neto, B. A. D. RSC Adv. 2014, 4, 54282–54299. doi:10.1039/c4ra10651b
  • Touré, B. B.; Hall, D. G. Chem. Rev. 2009, 109, 4439–4486. doi:10.1021/cr800296p ] Sheldon, R. A. Green Chem. 2017, 19, 18–43. doi:10.1039/c6gc02157c
  • Ciriminna, R.; Pagliaro, M. Org. Process Res. Dev. 2013, 17, 1479–1484. doi:10.1021/op400258a
  • Abdel-Mohsen, H. T.; Conrad, J.; Beifuss, U. Green Chem. 2012, 14, 2686–2690. doi:10.1039/c2gc35950b
  • Ghorbani-Choghamarani, A.; Zolfigol, M. A.; Salehi, P.; Ghaemi, E.; Madrakian, E.; Nasr-Isfahani, H.; Shahamirian, M. Acta Chim. Slov. 2008, 55, 644–647.
  • Sharma, V. K.; Singh, S. K. RSC Adv. 2017, 7, 2682–2732. doi:10.1039/c6ra24823c
  • Javanbakht, S.; Shaabani, A. ACS Appl. Bio Mater. 2020, 3, 156–174. doi:10.1021/acsabm.9b00799
  • Lavilla, R. J. Chem. Soc., Perkin Trans. 1 2002, 1141–1156. doi:10.1039/b101371h
  • Silva, E. M. P.; Varandas, P. A. M. M.; Silva, A. M. S. Synthesis 2013, 45, 3053–3089. doi:10.1055/s-0033-1338537
  • Nasr-Esfahani, M.; Montazerozohori, M.; Raeatikia, R. Maejo Int. J. Sci. Technol. 2014, 8, 32–40.
  • Pal, S.; Choudhury, L. H.; Parvin, T. Synth. Commun. 2013, 43, 986–992. doi:10.1080/00397911.2011.618283
  • Pacheco, S. R.; Braga, T. C.; da Silva, D. L.; Horta, L. P.; Reis, F. S.; Ruiz, A. L. T. G.; de Carvalho, J. E.; Modolo, L. V.; de Fatima, A. Med. Chem. 2013, 9, 889–896. doi:10.2174/1573406411309060014
  • Pramanik, A.; Saha, M.; Bhar, S. ISRN Org. Chem. 2012, 1–7. doi:10.5402/2012/342738
  • Vanden Eynde, J.; Mayence, A. Molecules 2003, 8, 381–391. doi:10.3390/80400381
  • D'Alessandro, O.; Sathicq, Á. G.; Sambeth, J. E.; Thomas, H. J.; Romanelli, G. P. Catal. Commun. 2015, 60, 65–69. doi:10.1016/j.catcom.2014.11.022
  • Shen, L.; Cao, S.; Wu, J.; Zhang, J.; Li, H.; Liu, N.; Qian, X. Green Chem. 2009, 11, 1414–1420. doi:10.1039/b906358g
  • Bosica, G.; Abdilla, R. Green Chem. 2017, 19, 5683–5690. doi:10.1039/c7gc02038d
  • Sheldon, R. A. Chem. Commun. 2008, 3352–3365. doi:10.1039/b803584a
  • Cave, G. W. V.; Raston, C. L.; Scott, J. L. Chem. Commun. 2001, 2159–2169. doi:10.1039/b106677n
  • Heravi, M. M.; Bakhtiari, K.; Javadi, N. M.; Bamoharram, F. F.; Saeedi, M.; Oskooie, H. A. J. Mol. Catal. A: Chem. 2007, 264, 50–52. doi:10.1016/j.molcata.2006.09.004
  • Bitaraf, M.; Amoozadeh, A.; Otokesh, S. J. Chin. Chem. Soc. 2016, 63, 336–344. doi:10.1002/jccs.201500453
  • Liu, Y.; Zhao, G.; Wang, D.; Li, Y. Natl. Sci. Rev. 2015, 2, 150–166. doi:10.1093/nsr/nwv014
  • Firuzi, O.; Javidnia, K.; Mansourabadi, E.; Saso, L.; Mehdipour, A. R.; Miri, R. Arch. Pharmacal Res. 2013, 36, 1392–1402. doi:10.1007/s12272-013-0149-8
  • Sharma, M. G.; Vala, R. M.; Patel, D. M.; Lagunes, I.; Fernandes, M. X.; Padrón, J. M.; Ramkumar, V.; Gardas, R. L.; Patel, H. M. ChemistrySelect 2018, 3, 12163–12168. doi:10.1002/slct.201802537
  • Zhu, S.; Zhu, Y.; Gao, X.; Mo, T.; Zhu, Y.; Li, Y. Bioresour. Technol. 2013, 130, 45–51. doi:10.1016/j.biortech.2012.12.011
  • Orellana, E. A.; Kasinski, A. L. Bio-Protoc. 2016, 6, e1984. doi:10.21769/bioprotoc.1984
  • Monks, A.; Scudiero, D.; Skehan, P.; Shoemaker, R.; Paull, K.; Vistica, D.; Hose, C.; Langley, J.; Cronise, P.; Vaigro-Wolff, A.; Gray-Goodrich, M.; Campbell, H.; Mayo, J.; Boyd, M. J. Natl. Cancer Inst. 1991, 83, 757–766. doi:10.1093/jnci/83.11.757