TY - JOUR
AU - Betancor, J.J.
AU - Hu, W.
AU - Wu, H.
AU - Yang, D.
T1 - Boundedness of oscillation and variation of semigroups associated with Bessel Schrödinger operators
LA - eng
PY - 2021
T2 - Nonlinear Analysis, Theory, Methods and Applications
SN - 0362-546X
VL - 202
PB - Elsevier Ltd
AB - Let [Formula presented] and [Formula presented] be the Bessel Schrödinger operator on R+≔(0,∞). The authors obtain the sharp power-weighted Lp, weak type and restricted weak type inequalities for the oscillation operator O{ti}i∈N({tm∂tmWtλ}t>0,⋅) and the variation operator Vρ({tm∂tmWtλ}t>0,⋅) of the heat semigroup {Wtλ}t>0 associated with Sλ, where ρ∈(2,∞) and m∈Z+≔N∪{0}. Moreover, for λ∈(0,∞), the boundedness of O{ti}i∈N({tm∂tmWtλ}t>0,⋅) and Vρ({tm∂tmWtλ}t>0,⋅) from the Hardy space Hp(R+) into Lp(R+) with [Formula presented] and on the Campanato type spaces BMOα(R+) with α∈[0,1)∩(0,λ) are obtained.
DO - 10.1016/j.na.2020.112146
UR - https://portalciencia.ull.es/documentos/5ffbfd444de4b04b59f7d8ee
DP - Dialnet - Portal de la Investigación
ER -