Improvement of Polyunsaturated Fatty Acid Production in Echium acanthocarpum Transformed Hairy Root Cultures by Application of Different Abiotic Stress Conditions
- Dorta-Guerra, Roberto 1
- Zárate, Rafael 2
- El Jaber-Vazdekis, Nabil 3
- Cequier-Sánchez, Elena 23
- Rodríguez, Covadonga 45
- Ravelo, Ángel G. 23
- 1 Statistics and Computation Deptartment, Maths Faculty, University of La Laguna, Ave. Fco. Sánchez, 38206 La Laguna, Tenerife, Spain
- 2 Canary Islands Cancer Research Institute (ICIC), 61 Avenida La Trinidad, Torre A. Arévalo, 7th Floor, 38204 La Laguna, Tenerife, Spain
- 3 Bio-Organic University Institute A.G. González, University of La Laguna, Ave. Fco. Sánchez, 38206 La Laguna, Tenerife, Spain
- 4 Animal Biology Deptartment (Physiology Unit), Biology Faculty, University of La Laguna, Ave. Fco. Sánchez, 38206 La Laguna, Tenerife, Spain
- 5 Institute of Biomedical Technologies (ITB), University of La Laguna, Campus de Ofra, 38071 La Laguna, Tenerife, Spain
ISSN: 2090-9403
Year of publication: 2013
Volume: 2013
Pages: 1-20
Type: Article
More publications in: ISRN Biotechnology
Abstract
Fatty acids are of great nutritional, therapeutic, and physiological importance, especially the polyunsaturated n-3 fatty acids, possessing larger carbon chains and abundant double bonds or their immediate precursors. A few higher plant species are able to accumulate these compounds, like those belonging to the Echium genus. Here, the novel E. acanthocarpum hairy root system, which is able to accumulate many fatty acids, including stearidonic and α-linolenic acids, was optimized for a better production. The application of abiotic stress resulted in larger yields of stearidonic and α-linolenic acids, 60 and 35%, respectively, with a decrease in linoleic acid, when grown in a nutrient medium consisting of B5 basal salts, sucrose or glucose, and, more importantly, at a temperature of 15∘C. The application of osmotic stress employing sorbitol showed no positive influence on the fatty acid yields; furthermore, the combination of a lower culture temperature and glucose did not show a cumulative boosting effect on the yield, although this carbon source was similarly attractive. The abiotic stress also influenced the lipid profile of the cultures, significantly increasing the phosphatidylglycerol fraction but not the total lipid neither their biomass, proving the appropriateness of applying various abiotic stress in this culture to achieve larger yields.
Bibliographic References
- 10.1016/j.tibtech.2008.09.001
- 10.1016/j.chemphyslip.2008.02.009
- 10.3390/nu2030355
- 10.1016/0163-7827(92)90008-7
- (2003), The American Journal of Clinical Nutrition, 77, pp. 943, 10.1093/ajcn/77.4.943
- 10.1007/s00431-009-1035-8
- 10.1111/j.1467-7652.2010.00536.x
- (1968), Experimental Cell Research, 50, pp. 151, 10.1016/0014-4827(68)90403-5
- 10.1093/jxb/eri130
- 10.1016/0304-4157(84)90005-4
- 10.1146/annurev.arplant.53.100201.160729
- 10.1126/science.287.5452.476
- (2002), Cellular & Molecular Biology Letters, 7, pp. 262
- (1993), Archives of Medical Research, 24, pp. 247
- (1996), Science, 271, pp. 815, 10.1126/science.271.5250.815
- 10.1046/j.1365-2958.2002.03103.x
- 10.1006/bbrc.2000.2826
- (2000), Current Science, 79, pp. 557
- (2002), Crop Science, 42, pp. 2031, 10.2135/cropsci2002.2031
- 10.1016/S0163-7827(01)00027-3
- 10.1104/pp.124.4.1697
- 10.1104/pp.90.2.760
- 10.1006/bbrc.2001.4667
- 10.1016/S0734-9750(02)00007-1
- 10.1093/jxb/38.9.1501
- 10.1007/BF00232091
- 10.1007/BF02632208
- (1995), Biotechnology Letters, 17, pp. 1347
- 10.1023/A:1005672400219
- 10.1016/S0141-0229(00)00292-1
- 10.1016/j.enzmictec.2004.07.010
- 10.1007/s11160-010-9159-5
- (1986), Biochimica et Biophysica Acta, 860, pp. 325, 10.1016/0005-2736(86)90529-8
- 10.1016/S1095-6433(01)00509-8
- 10.1007/s10529-006-9085-8
- 10.1186/1472-6750-11-42
- (1957), The Journal of Biological Chemistry, 226, pp. 497
- 10.1021/jf073471e
- (1982), The isolation of lipid from tissues, the preparation of derivatives of lipids, pp. 17–23, 55
- 10.1023/A:1022380827034
- 10.1007/s10725-007-9204-0
- (2008), Pakistan Journal of Botany, 40, pp. 1487
- 10.1016/j.enzmictec.2004.07.010
- 10.1016/j.plaphy.2004.10.001
- (1993), Proceedings of the National Academy of Sciences of the United States of America, 90, pp. 6208, 10.1073/pnas.90.13.6208
- 10.1016/S1161-0301(96)02034-5
- 10.1093/aob/mch150
- 10.1023/A:1024331414564
- 10.1086/297443
- 10.1006/anbo.1999.0927
- 10.1104/pp.128.2.682
- 10.1016/S0098-8472(03)00060-1
- 10.1007/BF00033886
- 10.1016/S0031-9422(01)00210-2
- 10.1007/BF00385749
- (2006), Physiologia Plantarum, 41, pp. 29
- (1984), Plant and Cell Physiology, 25, pp. 1437, 10.1093/oxfordjournals.pcp.a076855
- 10.1016/j.jplph.2005.12.008
- 10.1038/356710a0
- 10.1034/j.1399-3054.2003.00067.x
- 10.1111/j.1399-3054.2005.00594.x
- (1983), Plant and Cell Physiology, 24, pp. 81, 10.1093/oxfordjournals.pcp.a076516
- 10.1105/tpc.7.1.17
- 10.1104/pp.90.3.955
- 10.1016/j.bbamem.2004.08.002
- 10.1007/s00709-008-0291-1
- 10.1007/s002530100754
- (1994), Plant Physiology, 105, pp. 601, 10.1104/pp.105.2.601
- 10.1186/1471-2229-4-17
- 10.1093/jxb/erj075
- 10.1093/jxb/erl120
- (1995), Plant Physiology, 107, pp. 1177, 10.1104/pp.107.4.1177
- 10.1046/j.1365-313X.2000.00925.x
- 10.1016/S0168-1656(00)00346-1
- 10.1007/s11032-007-9105-y
- 10.1007/s11032-009-9352-1
- 10.1590/S1677-04202010000300007
- 10.1104/pp.70.6.1689
- 10.1016/0014-5793(93)81327-V
- (1994), Plant Physiology, 106, pp. 1615, 10.1104/pp.106.4.1615
- 10.1111/j.1365-313X.2005.02535.x
- 10.2135/cropsci2006.04.0213
- 10.1016/j.bbrc.2005.12.126
- 10.1007/s11240-009-9541-y
- 10.1016/0031-9422(95)00459-K
- 10.1111/j.1365-313X.2007.03235.x
- (1994), Planta, 194, pp. 193, 10.1007/BF01101678
- 10.1016/S0163-7827(01)00023-6
- 10.1016/j.biotechadv.2009.07.001
- 10.1016/j.ymben.2010.04.002