Applying Agronomic Principles of Rhizobial Inoculation to the Conservation of a Keystone Legume Species in a High Mountain Ecosystem on an Oceanic Island

  1. Pulido Suárez, Laura María 1
  2. Águeda M. González-Rodríguez
  3. Jonay Cubas
  4. Marcelino del Arco-Aguilar
  5. José L. Martín-Esquivel
  6. Milagros León-Barrios 1
  1. 1 Universidad de La Laguna

    Universidad de La Laguna

    San Cristobal de La Laguna, España

    GRID grid.10041.34

Frontiers in Agronomy

ISSN: 2673-3218

Year of publication: 2021

Type: Article

Export: RIS

Bibliographic References

  • Agele, S., Ajayi, A., and Olawanle, F. (2017). Effects of watering regime and rhizobium inoculation on the growth, functional and yield traits of four legume species. Int. J. Plant Soil Sci. 17, 1–15. doi: 10.9734/IJPSS/2017/32891
  • Arbelo, C. D., Sánchez, J., Notario, J., and Mora, J. (2009). “Parque Nacional del Teide. Dinámica de nutrientes y carbono en los suelos” in Proyectos de Investigación en Parques Nacionales: 2005-2008, eds L. Ramírez, and B. Asensio (Spain: Organismo Autónomo de Parques Nacionales), 43–71.
  • Ashraf, M., and Harris, P. J. C. (2013). Photosynthesis under stressful environments: an overview. Photosynthetica 51, 163–190. doi: 10.1007/s11099-013-0021-6
  • Bello-Rodríguez, V., Mateo, R. G., Pellissier, L., Cubas, J., Cooke, B., and González-Mancebo, J. M. (2020). Forecast increase in invasive rabbit spread into ecosystems of an oceanic island (Tenerife) under climate change. Ecol. Appl. 31:e02206. doi: 10.1002/eap.2206
  • rBordeleau, L. M., and Prévost, D. (1994). Nodulation and nitrogen fixation in extreme environments. Plant Soil. 161, 115–125. doi: 10.1007/BF02183092
  • Busse, M. D., and Bottomley, P. J. (1989). Growth and nodulation responses of rhizobium meliloti to water stress induced by permeating and nonpermeating solutes. Appl. Environ. Microbiol. 55, 2431–2436. doi: 10.1128/AEM.55.10.2431-2436.1989
  • Castro, I., Casado, M. Á., Ramirez-Sanz, L., de Miguel, J. M., Costa, M., and Díaz-Pineda, F. (1996). Funciones de estimación de la biomasa aérea de varias especies del matorral mediterráneo del centro de la península Ibérica. Orsis Org. Sist. 11, 107–116.
  • Catchpole, W. R., and Wheelert, C. J. (1985). Estimating plant biomass: a review of techniques. Austral Ecol. 17,121–131. doi: 10.1111/j.1442-9993.1992.tb00790.x
  • Chaer, G. M., Resende, A. S., Campello, E. F. C., de Faria, S. M., and Boddey, R.B. (2011). Nitrogen-fixing legume tree species for the reclamation of severely degraded lands in Brazil. Tree Physiol. 31, 139–49. doi: 10.1093/treephys/tpq116
  • Cornelissen, J. H. C., Lavorel, S., Garnier, E., Díaz, S., Buchmann, N., Gurvich, D. E., et al. (2003). A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Aust. J. Bot. 51, 335–380. doi: 10.1071/BT02124
  • Cubas, J., Martín-Esquivel, J. L., Nogales, M., Irl, S. D. H., Hernández-Hernández, R., López-Darias, M., et al. (2018). Contrasting effects of invasive rabbits on endemic plants driving vegetation change in a subtropical alpine insular environment. Biol. Invasions 20, 793–807. doi: 10.1007/s10530-017-1576-0
  • Defez, R., Andreozzi, A., Romano, S., Pocsfalvi, G., Fiume, I., Esposito, R., et al. (2019). Bacterial IAA-delivery into medicago root nodules triggers a balanced stimulation of C and N metabolism leading to a biomass increase. Microorganisms 7:403. doi: 10.3390/microorganisms7100403
  • del Arco-Aguilar, M., Pérez-De-Paz, P. L., Acebes, J. R., González-Mancebo, J. M., Reyes-Betancort, J. A., Bermejo, J. A., et al. (2006). Bioclimatology and climatophilous vegetation of the Island of Tenerife (Canary Islands). Ann. Bot. Fenn. 43, 167–192.
  • del Arco-Aguilar, M., and Rodríguez-Delgado, O. (2018). Vegetation of the Canary Islands. Cham: Springer. doi: 10.1007/978-3-319-77255-4
  • Díaz, F. J., Tejedor, M., Jiménez, C., and Dahlgren, R. A. (2011). Soil fertility dynamics in runoff-capture agriculture, Canary Islands, Spain. Agric. Ecosyst. Environ. 144, 253–261. doi: 10.1016/j.agee.2011.08.021
  • diCenzo, G. C., Zamani, M., Checcucci, A., Fondi, M., Griffitts, J. S., Finan, T. M., et al. (2019). Multidisciplinary approaches for studying rhizobium–legume symbioses. Can. J. Microbiol. 65, 1–33. doi: 10.1139/cjm-2018-0377
  • Donate-Correa, J., Leon-Barrios, M., Perez-Galdona, R., and del Arco-Aguilar, M. (2007). Different Mesorhizobium species sharing the same symbiotic genes nodulate the shrub legume Anagyris latifolia. Syst. Appl. Microbiol. 30, 615–623. doi: 10.1016/j.syapm.2007.07.002
  • Fonseca, M. B., Peix, A., de Faria, S. M., Mateos, P. F., Rivera, L. P., Simões-Araujo, J. L., et al. (2012). Nodulation in Dimorphandra wilsonii Rizz. (Caesalpinioideae), a Threatened Species Native to the Brazilian Cerrado. PLoS ONE 7:e49520. doi: 10.1371/journal.pone.0049520
  • Forbis, T. A. (2003). Seedling demography in an alpine ecosystem. Am. J. Bot. 90, 1197–1206. doi: 10.3732/ajb.90.8.1197
  • Fuhrmann, J., Davey, C. B., and Wollum, A. G. (1986). Desiccation tolerance of clover rhizobia in sterile soils. Soil Sci. Soc. Am. J. 50, 639–644. doi: 10.2136/sssaj1986.03615995005000030019x
  • González-Rodríguez, Á. M., Brito, P., Lorenzo, J. R., Gruber, A., Oberhuber, W., and Wieser, G. (2017). Seasonal cycles of sap flow and stem radius variation of Spartocytisus supranubius in the alpine zone of Tenerife, Canary Islands. Alp. Bot. 127, 97–108. doi: 10.1007/s00035-017-0189-7
  • Gough, L. (2010). The spatial ecology of an endemic desert shrub (PhD thesis). Nottingham: University of Nottingham.
  • Ibarrola-Ulzurrun, E., Marcello, J., Gonzalo-Martín, C., and Martín-Esquivel, J. L. (2019). Temporal dynamic analysis of a mountain ecosystem based on multi-source and multi-scale remote sensing data. Ecosphere 10, 1–17. doi: 10.1002/ecs2.2708
  • Irisarri, P., Cardozo, G., Tartaglia, C., Reyno, R., Gutiérrez, P., Lattanzi, F. A., et al. (2019). Selection of competitive and efficient rhizobia strains for white clover. Front. Microbiol. 10:768. doi: 10.3389/fmicb.2019.00768
  • Kang, G., Li, G., Xu, W., Peng, X., Han, Q., Zhu, Y., et al. (2012). Proteomics reveals the effects of salicylic acid on growth and tolerance to subsequent drought stress in wheat. J. Proteome Res. 11, 6066–6079. doi: 10.1021/pr300728y
  • Kumar, S., Stecher, G., Li, M., Knyaz, C., and Tamura, K. (2018). MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35, 1547–1549. doi: 10.1093/molbev/msy096
  • Kyncl, T., Suda, J., Wild, J., Wildova, R., and Herben, T. (2006). Population dynamics and clonal growth of Spartocytisus supranubius (Fabaceae), a dominant shrub in the alpine zone of Tenerife, Canary islands. Plant Ecol. 186, 97–108. doi: 10.1007/s11258-006-9115-6
  • Laguerre, G., Nour, S. M., Macheret, V., Sanjuan, J., Drouin, P., and Amarger, N. (2001). Classification of rhizobia based on nodC and nifH gene analysis reveals a close phylogenetic relationship among Phaseolus vulgaris symbionts. Microbiology 147, 981–993. doi: 10.1099/00221287-147-4-981
  • Lorite, M. J., Donate-Correa, J., del Arco-Aguilar, M., Pérez Galdona, R., Sanjuán, J., and León-Barrios, M. (2010). Lotus endemic to the Canary Islands are nodulated by diverse and novel rhizobial species and symbiotypes. Syst. Appl. Microbiol. 33, 282–290. doi: 10.1016/j.syapm.2010.03.006
  • Macar, T. K., and Ekmekçi, Y. (2008). PSII photochemistry and antioxidant responses of a chickpea variety exposed to drought. Zeitschrift Naturforsch. 63, 583–594. doi: 10.1515/znc-2008-7-820
  • Mahler, R. L., and Wollum, A. G. (1980). Influence of water potential on the survival of rhizobia in a goldsboro loamy sand. Soil Sci. Soc. Am. J. 44, 988–992. doi: 10.2136/sssaj1980.03615995004400050023x
  • Marinković, J., Bjelić, D., Dordević, V., Balešević-Tubić, S., Jošić, D., and Vucelić-Radović, B. (2019). Performance of different Bradyrhizobium strains in root nodule symbiosis under drought stress. Acta Physiol. Plant. 41:37. doi: 10.1007/s11738-019-2826-9
  • Marino, D., Frendo, P., Ladrera, R., Zabalza, A., Puppo, A., Arrese-Igor, C., et al. (2007). Nitrogen fixation control under drought stress. Localized or systemic? Plant Physiol. 143, 1968–1974. doi: 10.1104/pp.107.097139
  • Martín-Esquivel, J. L., Marrero-Gómez, M., Cubas, J., González-Mancebo, J. M., Olano, J. M., and del Arco-Aguilar, M. (2020). Climate warming and introduced herbivores disrupt alpine plant community of an oceanic island (Tenerife, Canary Islands). Plant Ecol. 221, 1117–1131. doi: 10.1007/s11258-020-01066-5
  • Martínez-Hidalgo, P., Pérez-Yépez, J., Velázquez, E., Pérez-Galdona, R., Martínez-Molina, E., and León-Barrios, M. (2016). Symbiovar loti genes are widely spread among Cicer canariense mesorhizobia, resulting in symbiotically effective strains. Plant Soil 398, 25–33. doi: 10.1007/s11104-015-2614-2
  • Maxwell, K., and Johnson, G. (2000). Chlorophyll fluorescence-a practical guide. J. Exp. Bot. 51, 659–668. doi: 10.1093/jexbot/51.345.659
  • Navarro, A., Fos, S., Laguna, E., Durán, D., Rey, L., Rubio-Sanz, L., et al. (2014). Conservation of endangered Lupinus mariae-josephae in its natural habitat by inoculation with selected, native Bradyrhizobium strains. PLoS ONE 9:e102205. doi: 10.1371/journal.pone.0102205
  • Nilsen, E. T., Karpa, D., Mooney, H. A., and Field, C. (1993). Patterns of stem photosynthesis in two invasive legumes (Spartium junceum, Cytisus scoparius) of the California coastal region. Am. J. Bot. 80, 1126–1136. doi: 10.1002/j.1537-2197.1993.tb15344.x
  • Oksanen, A. J., Blanchet, F. G., Friendly, M., Kindt, R., Legendre, P., Mcglinn, D., et al. (2016). Vegan: Community Ecology Package. Ordination Methods, Diversity Analysis and Other Functions for Community and Vegetation Ecologists. Available online at: (accessed January 12, 2021).
  • Olano, J. M., Brito, P., González-Rodríguez, Á. M., Martín-Esquivel, J. L., García-Hidalgo, M., and Rozas, V. (2017). Thirsty peaks: drought events drive keystone shrub decline in an oceanic island mountain. Biol. Conserv. 215, 99–106. doi: 10.1016/j.biocon.2017.09.008
  • Paknejad, F., Nasri, M., Moghadam, H. R. T., Zahedi, H., and Alahmad, M. A. (2007). Effects of drought stress on chlorophyll fluoresence parameters, chlorophyll content and grain yield of wheat cultivars. J. Biol. Sci. 7, 841–847. doi: 10.3923/jbs.2007.841.847
  • Pérez de Paz, P., Del Arco, M., Acebes, J., and Wilpret, W. (1986). Leguminosas Forrajeras de CANARIAS. Santa Cruz de Tenerife: Museo Insular de Ciencias Naturales.
  • Pottier, J., and Jabot, F. (2017). Non-destructive biomass estimation of herbaceous plant individuals: a transferable method between contrasted environments. Ecol. Indic. 72, 769–776. doi: 10.1016/j.ecolind.2016.08.030
  • Pulido-Suárez, L., Diaz-Peña, F., Notario del Pino, J. S., Cabrera-Medina, A., and Leon-Barrios, M. (2021). Alteration of soil rhizobial populations by rabbit latrines could impair symbiotic nitrogen fixation in the insular alpine ecosystem of Teide National Park. Agric. Ecosyst. Environ. Appl. Soil Ecol. 160:103850. doi: 10.1016/j.apsoil.2020.103850
  • R Core Team (2017). R: A Language and Environment for Statistical Computing. Available online at:
  • Rodríguez, N., Notario, J., Arbelo, C. D., Rodríguez-Rodríguez, A., and Guerra, J. A. (2014). Spatial variability of soil properties and soils classification in Teide National Park (Tenerife, Canary Islands). GlobalSoilMap 191–196. doi: 10.1201/b16500-37
  • Rodríguez-Delgado, O., and Elena-Roselló, R. (2006). Evolución del Paisaje Vegetal del Parque Nacional del Teide. Madrid: Ministerio de Medio Ambiente.
  • Safronova, V., Belimov, A., Andronov, E., Popova, J., Tikhomirova, N., Orlova, O., et al. (2017). Method for obtaining root nodules of the Baikal relict legumes in laboratory pot experiments. Int. J. Environ. Stud. 74, 700–705. doi: 10.1080/00207233.2017.1283948
  • Staudinger, C., Mehmeti-Tershani, V., Gil-Quintana, E., Gonzalez, E. M., Hofhansl, F., Bachmann, G., et al. (2016). Evidence for a rhizobia-induced drought stress response strategy in Medicago truncatula. J. Proteomics 136, 202–213. doi: 10.1016/j.jprot.2016.01.006
  • Stepkowski, T., Banasiewicz, J., Granada, C. E., Andrews, M., and Passaglia, L. M. P. (2018). Phylogeny and phylogeography of rhizobial symbionts nodulating legumes of the tribe genisteae. Genes 9:163. doi: 10.3390/genes9030163
  • Vinuesa, P., León-Barrios, M., Silva, C., Willems, A., Jarabo-Lorenzo, A., Pérez-Galdona, R., et al. (2005a). Bradyrhizobium canariense sp. nov., an acid-tolerant endosymbiont that nodulates endemic genistoid legumes (Papilionoideae: Genisteae) from the Canary Islands, along with Bradyrhizobium japonicum bv. genistearum, Bradyrhizobium genospecies alpha and Bradyrhizobium genospecies beta. Int. J. Syst. Evol. Microbiol. 55, 569–575. doi: 10.1099/ijs.0.63292-0
  • Vinuesa, P., Silva, C., Werner, D., and Martínez-Romero, E. (2005b). Population genetics and phylogenetic inference in bacterial molecular systematics: the roles of migration and recombination in Bradyrhizobium species cohesion and delineation. Mol. Phylogenet. Evol. 34, 29–54. doi: 10.1016/j.ympev.2004.08.020
  • Wheeler, C., and Dickson, J. (1990). Symbiotic nitrogen fixation and distribution of Spartocytisus supranubius on Las Cañadas, Tenerife. Vieraea 19, 309–314.
  • Zahran, H. H. (1999). Rhizobium -legume symbiosis and nitrogen fixation under severe conditions and in an arid climate. Microbiol. Mol. Biol. Rev. 63, 968–989. doi: 10.1128/MMBR.63.4.968-989.1999