On the road to a sustainable transport mobility in isolated power systems: The role of light-duty powertrain electrification

  1. García-Afonso, Óscar 1
  2. Santana-Méndez, Itziar
  3. Delgado-Torres, Agustín M. 1
  4. González-Díaz, Benjamín 1
  1. 1 Universidad de La Laguna

    Universidad de La Laguna

    San Cristobal de La Laguna, España

    ROR https://ror.org/01r9z8p25

Journal of Cleaner Production

ISSN: 0959-6526

Year of publication: 2021

Pages: 128646

Type: Article

DOI: 10.1016/J.JCLEPRO.2021.128646 GOOGLE SCHOLAR lock_openOpen access editor


Plug-in vehicles are seen as a promising path to reduce the road transport greenhouse gas (GHG) emissions. However, the singularities of small isolated power systems in terms of the high dependence of fossil fuel-based generation and the relative short distances travelled do require a particular analysis to evaluate the potential emission reduction. This paper describes a simulation study for estimating the energy consumption and the corresponding Well-to-Wheels GHG emissions of different light-duty powertrain architectures subjected to real-world driving conditions, taking the island of Tenerife (Canary Islands) as a test case. The simulations have been carried out with a high-level vehicle powertrain system analysis tool, capable to estimate second-by-second vehicle energy consumption. Road gradient, GHG grid intensity and battery capacity impact on the GHG emission reduction were analysed in detail.Based on the results, the current high carbon content of the grid and the additional weight of the large battery packs limit the potential benefit of Battery Electric Vehicles (BEVs) with respect to hybrid architectures (HEV). The simulations also reveal that Plug-in Hybrid Electric Vehicles (PHEVs) currently offer a great potential to reduce the GHG emissions. Unlike other geographical areas, the high Utility Factors derived from the short distances travelled ensure the proper use of this technology.

Bibliographic References

  • Alvarez, (2012), Fuel, 10.1016/j.fuel.2012.01.022
  • Anon, (2018)
  • Anon, (2020)
  • Anon, (2020)
  • Argonne National Laboratory (ANL), (2018)
  • Borlaug, (2020), Transp. Res. D, 10.1016/j.trd.2020.102448
  • Borlaug, (2020), Transp. Res. D, 10.1016/j.trd.2020.102448
  • Brooker, (2015)
  • Cabildo de Tenerife, (2018)
  • Camus, (2012), Energy Policy, 10.1016/j.enpol.2011.12.046
  • de Canarias, (2020)
  • de Canarias, (2021)
  • Chen, (2018), Int. J. Environ. Sci. Technol., 10.1007/s13762-017-1458-0
  • Deloitte, (2020)
  • EEA, (2020)
  • de España, (2020)
  • European Commission, (2020)
  • Gay, (2018), Util. Policy, 55, pp. 69, 10.1016/j.jup.2018.09.006
  • Genikomsakis, (2017), Transp. Res. D, 10.1016/j.trd.2016.10.014
  • Godina, (2015)
  • Guerin, (2016)
  • IEA, (2019), Int. Energy Agency
  • ITP Renewables, (2020)
  • Ji, (2020), Transp. Res. D, 10.1016/j.trd.2020.102555
  • Julius Jöhrens, Dominik Räder, (2020)
  • Koffi, (2017)
  • Laberteaux, (2019), Transp. Res. D, 10.1016/j.trd.2019.05.013
  • Lopes, (2009)
  • Lorf, (2013), Transp. Res. D, 10.1016/j.trd.2013.03.004
  • McLaren, (2016), Electr. J.
  • Ministerio para la Transición Ecológica y el Reto Demográfico, (2020), Gobierno de España, pp. 1
  • Neubauer, J.S., Wood, E., 2013. Accounting for the variation of driver aggression in the simulation of conventional and advanced vehicles. In: SAE Technical Papers. http://dx.doi.org/10.4271/2013-01-1453.
  • Neubauer, (2014), J. Power Sources, 10.1016/j.jpowsour.2014.02.083
  • Paffumi, (2018), Transp. Policy, 10.1016/j.tranpol.2018.02.014
  • Pina, (2014), Energy Policy, 10.1016/j.enpol.2013.07.120
  • Pina, (2008)
  • Plötz, (2017), Sci. Rep., 10.1038/s41598-017-16684-9
  • Ramirez-Diaz, (2016), J. Mod. Power Syst. Clean Energy, 4, pp. 604, 10.1007/s40565-016-0243-2
  • Ramírez-Díaz, (2015), Sustainability
  • Ramos-Real, (2018), pp. 140
  • Robinson, (2013), Energy Policy, 10.1016/j.enpol.2013.05.074
  • Rosenfeld, (2019), J. Cleaner Prod., 238, 10.1016/j.jclepro.2019.117879
  • Rosero, (2021), Appl. Energy, 10.1016/j.apenergy.2020.116195
  • Serrano, (2019)
  • Shi, (2019), J. Cleaner Prod., 228, pp. 606, 10.1016/j.jclepro.2019.04.301
  • Society of Automotive Engineers, (2010), SAE Int.
  • UNECE, (2020)
  • Uwe Tietge, Sonsoles Díaz, Peter Mock, Anup Bandivadekar, (2019)
  • Wang, (2020), J. Cleaner Prod., 275, 10.1016/j.jclepro.2020.123061
  • Wood, E., Burton, E., Duran, A., Gonder, J., 2014. Contribution of road grade to the energy use of modern automobiles across large datasets of real-world drive cycles. In: SAE Technical Papers. http://dx.doi.org/10.4271/2014-01-1789.
  • Zhang, (2020), Transp. Res. D, 10.1016/j.trd.2020.102565