Effects of salt stress on plant growth, abscisic acid and salicylic acid in own-rooted cultivars of Vitis vinifera L.

  1. Álvarez-Méndez, Sergio J. 1
  2. Urbano-Gálvez, Antonio 2
  3. Vives-Peris, Vicente 3
  4. Pérez-Clemente, Rosa M. 3
  5. Gómez-Cadenas, Aurelio 3
  6. Mahouachi, Jalel 2
  1. 1 Universidad de La Laguna, Dept. Ingeniería Agraria, Náutica, Civil y Marítima. Ctra. de Geneto 2, 38200 La Laguna, Tenerife Universidad de La Laguna, Instituto Universitario de Bio-Orgánica Antonio González. Avda. Astrofísico Francisco Sánchez, 38206 La Laguna, Tenerife
  2. 2 Universidad de La Laguna, Dept. Ingeniería Agraria, Náutica, Civil y Marítima. Ctra. de Geneto 2, 38200 La Laguna, Tenerife
  3. 3 Universidad Jaume I, Dept. Ciencias Agrarias y del Medio Natural, Campus Riu Sec. 12071 Castellón de la Plana
Revista:
Spanish journal of agricultural research

ISSN: 1695-971X 2171-9292

Año de publicación: 2021

Volumen: 19

Número: 3

Tipo: Artículo

DOI: 10.5424/SJAR/2021193-17946 DIALNET GOOGLE SCHOLAR lock_openDialnet editor

Otras publicaciones en: Spanish journal of agricultural research

Resumen

Aim of study: In most areas of vineyards worldwide, cultivars are frequently grafted on specific rootstocks to avoid Daktulosphaira vitifoliae pest attack. Nevertheless, the absence of this pest in Canary Islands allowed the chance to conserve and cultivate traditional or new own-rooted genotypes without the requirement of the rootstocks. To investigate the responses of own-rooted genotypes of Vitis vinifera L. to salt stress conditions, ‘Castellana Negra’ (‘CN’) and ‘Negramoll’ (‘Ne’) were used with the aim to characterize their morphological and physiological responses.Area of study: Canary Islands, Spain.Material and methods: The effects of NaCl stress on growth, abscisic acid (ABA), salicylic acid (SA) and proline were assessed in ‘CN’ and ‘Ne’ under greenhouse conditions.Main results: In ‘CN’, the decrease of leaf number in stressed plants was lower and started eleven days later than in ‘Ne’. Salt stress also reduced stomatal conductance (gs), although such decrease took place earlier in ‘CN’ than in ‘Ne’. ABA and SA concentrations in ‘CN’ leaves were 2-fold higher than those of ‘Ne’. Salt stress increased leaf ABA and SA content in both genotypes, compared to control. In conclusion, ABA and SA appear to be involved in grapevines responses to salinity and suggest that exogenous SA could be useful to mitigate the stress impacts.Research highlights: ‘CN’ exhibited a better response than ‘Ne’ through the delay of salt injury establishment, and the dissimilar responses between ‘CN’ and ‘Ne’ seem to be associated to the higher accumulation of ABA and SA under salt stress.

Referencias bibliográficas

  • Acet T, Kadıoğlu A, 2020. SOS5 gene-abscisic acid crosstalk and their interaction with antioxidant system in Arabidopsis thaliana under salt stress. Physiol Mol Biol Plants 26: 1831-1845. https://doi.org/10.1007/s12298-020-00873-4
  • Ahanger MA, Aziz U, Alsahli AA, Alyemeni MN, Ahmad P, 2020. Influence of exogenous salicylic acid and nitric oxide on growth, photosynthesis, and ascorbate-glutathione cycle in salt stressed Vigna angularis. Biomolecules 10: 42. https://doi.org/10.3390/biom10010042
  • Amiri J, Eshghi S, Tafazoli E, Kholdebarin B, Abbaspour N, 2014. Ameliorative effects of salicylic acid on mineral concentrations in roots and leaves of two grapevine (Vitis vinifera L.) cultivars under salt stress. Vitis 53: 181-188.
  • Arbona V, Argamasilla R, Gómez-Cadenas A, 2010. Common and divergent physiological, hormonal and metabolic responses of Arabidopsis thaliana and Thellungiella halophila to water and salt stress. J Plant Physiol 167: 1342-1350. https://doi.org/10.1016/j.jplph.2010.05.012
  • Argamasilla R, Gómez-Cadenas A, Arbona V, 2014. Metabolic and regulatory responses in citrus rootstocks in response to adverse environmental conditions. J Plant Grow Regul 33: 169-180. https://doi.org/10.1007/s00344-013-9359-z
  • Ashraf M, Foolad MR, 2007. Roles of glycine betaine and proline in improving plant biotic stress resistance. Environ Exp Bot 59: 206-216. https://doi.org/10.1016/j.envexpbot.2005.12.006
  • Bates LS, Waldren RP, Teare ID, 1973. Rapid determination of free proline for water-stress studies. Plant Soil 39: 205-220. https://doi.org/10.1007/BF00018060
  • Ben Ahmed C, Ben Rouina B, Sensoy S, Boukhriss M, Ben Abdullah F, 2010. Exogenous proline effects on photosynthetic performance and antioxidant defense system of young olive tree. J Agric Food Chem 58: 4216-4222. https://doi.org/10.1021/jf9041479
  • Borsani O, Valpuesta V, Botella MA, 2001. Evidence for a role of salicylic acid in the oxidative damage generated by NaCl and osmotic stress in Arabidopsis seedlings. Plant Physiol 126: 1024-1030. https://doi.org/10.1104/pp.126.3.1024
  • Brunetti C, Sebastiani F, Tattini M, 2019. Review: ABA, flavonols, and the evolvability of land plants. Plant Sci 280: 448-454. https://doi.org/10.1016/j.plantsci.2018.12.010
  • Chen YE, Cui JM, Li GX, Yuan M, Zhang ZW, Yuan S, Zhang HY, 2016. Effect of salicylic acid on the antioxidant system and photosystem II in wheat seedlings. Biol Plant 60: 139-147. https://doi.org/10.1007/s10535-015-0564-4
  • Cramer GR, Ergul A, Grimplet J, Tillett RL, Tattersall EAR, Bohlman MC, Vincent D, Sonderegger J, Evans J, Osborne C et al., 2007. Water and salinity stress in grapevines: early and late changes in transcript and metabolite profiles. Funct Int Genomics 7: 111-134. https://doi.org/10.1007/s10142-006-0039-y
  • De Costa W, Zörb C, Hartung W, Schubert S, 2007. Salt resistance is determined by osmotic adjustment and abscisic acid in newly developed maize hybrids in the first phase of salt stress. Physiol Plant 131: 311-321. https://doi.org/10.1111/j.1399-3054.2007.00962.x
  • Dilukshi-Fernando VC, Schroeder DF, 2016. Role of ABA in Arabidopsis salt, drought, and desiccation tolerance. In: Abiotic and biotic stress in plants; Shanker A, Shanker C (eds.). pp: 507-523. IntechOpen, London. https://doi.org/10.5772/61957
  • Downton W, Loveys B, Grant W, 1990. Salinity effects on the stomatal behaviour of grapevine. N Phytol 116: 499-503. https://doi.org/10.1111/j.1469-8137.1990.tb00535.x
  • Durgbanshi A, Arbona V, Pozo O, Miersch O, Sancho JV, Gómez-Cadenas A, 2005. Simultaneous determination of multiple phytohormones in plant extracts by liquid chromatography-electrospray tandem mass spectrometry. J Agric Food Chem 53: 8437-8442. https://doi.org/10.1021/jf050884b
  • Fisarakis I, Chartzoulakis K, Stavrakas D, 2001. Response of 'Sultana' vines (V. vinifera L.) on six rootstocks to NaCl salinity exposure and recovery. Agric Water Manag 51: 13-27. https://doi.org/10.1016/S0378-3774(01)00115-9
  • Ghaffari H, Tadayon M, Nadeem M, Razmjoo J, Cheema M, 2020. Foliage applications of jasmonic acid modulate the antioxidant defence under water deficit growth in sugar beet. Span J Agric Res 17 (4): e0805. https://doi.org/10.5424/sjar/2019174-15380
  • Gómez-Cadenas A, Arbona V, Jacas J, Primo-Millo E, Talón M, 2002. Abscisic acid reduces leaf abscission and increases salt tolerance in citrus plants. J Plant Grow Regul 21: 234-240. https://doi.org/10.1007/s00344-002-0013-4
  • Gunes A, Inal A, Alpaslan M, Cicek N, Guneri E, Eraslan F, Guzelordu T, 2005. Effects of exogenously applied salicylic acid on the induction of multiple stress tolerance and mineral nutrition in maize (Zea mays L.). Arch Agron Soil Sci 51: 687-695. https://doi.org/10.1080/03650340500336075
  • Hare PD, Cress WA, 1997. Metabolic implications of stress-induced proline accumulation in plants. Plant Grow Regul 21: 79-102. https://doi.org/10.1023/A:1005703923347
  • Hasegawa PM, Bressan RA, Zhu JK, Bohnert HJ, 2000. Plant cellular and molecular responses to high salinity. Ann Rev Plant Physiol Plant Mol Biol 51: 463-499. https://doi.org/10.1146/annurev.arplant.51.1.463
  • Hayat S, Hayat Q, Alyemeni, MN, Wani AS, Pichtel J, Ahmad A, 2012. Role of proline under changing environments. Plant Signal Behav 7: 1456-1466. https://doi.org/10.4161/psb.21949
  • Hunt R, Cornelissen JHC, 1997. Components of relative growth rate and their interrelations in 59 temperate plant species. New Phytol 135: 395-417. https://doi.org/10.1046/j.1469-8137.1997.00671.x
  • Ju Y, Yue X, Min Z, Wang X, Fang Y, Zhang J, 2020. VvNAC17, a novel stress-responsive grapevine (Vitis vinifera L.) NAC transcription factor, increases sensitivity to abscisic acid and enhances salinity, freezing, and drought tolerance in transgenic Arabidopsis. Plant Physiol Biochem 146: 98-111. https://doi.org/10.1016/j.plaphy.2019.11.002
  • Khan W, Prithiviraj B, Smith DL, 2003. Photosynthetic responses of corn and soybean to foliar application of salicylates. J Plant Physiol 160: 485-492. https://doi.org/10.1078/0176-1617-00865
  • Khodary SEA, 2004. Effect of salicylic acid on the growth, photosynthesis and carbohydrate metabolism in salt-stressed maize plants. Inter J Agric Biol 6: 5-8.
  • Luo X, Dai Y, Zheng C, Yang Y, Chen W, Wang Q, Umashankar C, Du J, Liu W, Shu K, 2021. The ABI4‐RbohD/VTC2 regulatory module promotes Reactive Oxygen Species (ROS) accumulation to decrease seed germination under salinity stress. New Phytol 229: 950-962. https://doi.org/10.1111/nph.16921
  • Mahouachi J, 2018. Long-term salt stress influence on vegetative growth and foliar nutrient changes in mango (Mangifera indica L.) seedlings. Sci Hortic 234: 95-100. https://doi.org/10.1016/j.scienta.2018.02.028
  • Mahouachi J, Argamasilla R, Gómez-Cadenas A, 2012. Influence of exogenous glycine betaine and abscisic acid on papaya in responses to water-deficit stress. J Plant Grow Regul 31: 1-10. https://doi.org/10.1007/s00344-011-9214-z
  • Mahouachi J, Fernández-Galván D, Gómez-Cadenas A, 2013. Abscisic acid, indole-3-acetic acid and mineral-nutrient changes induced by drought and salinity in longan (Dimocarpus longan Lour.) plants. Acta Physiol Plant 35: 3137-3146. https://doi.org/10.1007/s11738-013-1347-1
  • Mahouachi J, López-Climent MF, Gómez-Cadenas A, 2014. Hormonal and hydroxycinnamic acids profiles in banana leaves in response to various periods of water stress. Sci World J: 540962. https://doi.org/10.1155/2014/540962
  • Miller G, Suzuki N, Ciftci-Yilmaz S, Mittler R, 2010. Reactive oxygen species homeostasis and signaling during drought and salinity stresses. Plant Cell Environ 33: 453-467. https://doi.org/10.1111/j.1365-3040.2009.02041.x
  • Montero E, Cabot C, Barcelo J, Poschenrieder C, 1997. Endogenous abscisic acid levels are linked to decreased growth of bush bean plants treated with NaCl. Physiol Plant 101: 17-22. https://doi.org/10.1034/j.1399-3054.1997.1010103.x
  • Munns R, 2002. Comparative physiology of salt and water stress. Plant Cell Environ 25: 239-250. https://doi.org/10.1046/j.0016-8025.2001.00808.x
  • Munns R, James RA, Lauchli A, 2006. Approaches to increasing the salt tolerance of wheat and other cereals. J Exp Bot 57: 1025-1043. https://doi.org/10.1093/jxb/erj100
  • Muñoz-Espinoza V, López-Climent M, Casaretto JA, Gómez-Cadenas A, 2015. Water stress responses of tomato mutants impaired in hormone biosynthesis reveal abscisic acid, jasmonic acid and salicylic acid interactions. Front Plant Sci 6: 997. https://doi.org/10.3389/fpls.2015.00997
  • Prior LD, Grieve AM, Cullis BR, 1992. Sodium chloride and soil texture interactions in irrigated field grown sultana grapevines. II. Plant mineral content, growth and physiology. Aust J Agric Res 43: 1067-1083. https://doi.org/10.1071/AR9921067
  • Qi L, Liu S, Li C, Fu J, Jing Y, Cheng J, Li H, Zhang D, Wang X, Dong X et al., 2020. Phytochrome-interacting factors interact with the ABA receptors PYL8 and PYL9 to orchestrate ABA signaling in darkness. Mol Plant 13: 414-430. https://doi.org/10.1016/j.molp.2020.02.001
  • Qin L, Kang W, Qi Y, Zhang Z, Wang N, 2016. The influence of silicon application on growth and photosynthesis response of salt stressed grapevines (Vitis vinifera L.). Acta Physiol Plant 38: 68. https://doi.org/10.1007/s11738-016-2087-9
  • Raghavendra AS, Gonugunta VK, Christmann A, Grill E, 2011. ABA perception and signaling. Trends Plant Sci 15: 395-401. https://doi.org/10.1016/j.tplants.2010.04.006
  • Rodríguez-Torres I, 2017. Variedades de vid cultivadas en Canarias: descriptores morfológicos, caracterización morfológica, molecular, agronómica y enológica. Instituto Canario de Investigaciones Agrarias, Canarias, Spain.
  • Seki M, Ishida J, Narusaka M, Fujita M, Nanjo T, Umezawa T, Kamiya A, Nakajima M, Enju A, Sakurai T et al., 2002. Monitoring the expression pattern of around 7,000 Arabidopsis genes under ABA treatments using a full-length cDNA microarray. Funct Integr Genomics 2: 282-291. https://doi.org/10.1007/s10142-002-0070-6
  • Shakirova FM, Sakhabutdinova AR, Bezrukova MV, Fatkhutdinova RA, Fatkhutdinova DR, 2003. Changes in the hormonal status of wheat seedlings induced by salicylic acid and salinity. Plant Sci 164: 317-322. https://doi.org/10.1016/S0168-9452(02)00415-6
  • Sharma M, Gupta SK, Majumder B, Maurya VK, Deeba F, Alam A, Pandey V, 2017. Salicylic acid mediated growth, physiological and proteomic responses in two wheat varieties under drought stress. J Proteomics 163: 28-51. https://doi.org/10.1016/j.jprot.2017.05.011
  • Singh B, Usha K, 2003. Salicylic acid induced physiological and biochemical changes in wheat seedlings under water stress. Plant Grow Regul 39: 137-141.
  • Sohag AAM, Tahjib-Ul-Arif M, Brestic M, Afrin S, Sakil MA, Hossain MT, Hossain MA, Hossain MA, 2020. Exogenous salicylic acid and hydrogen peroxide attenuate drought stress in rice. Plant Soil Environ 66: 7-13. https://doi.org/10.17221/472/2019-PSE
  • Stevens RM, Harvey G, Partington DL, Coombe BG, 1999. Irrigation of grapevines with saline water at different growth stages: effects on soil, vegetative growth and yield. Aust J Agric Res 50: 343-355. https://doi.org/10.1071/A98077
  • Tahjib-UI-Arif M, Sohag AAM, Afrin S, Bashar KK, Afrin T, Mahamud ASU, Polash MAS, Hossain MT, Sohel MAT, Brestic M, Murata Y, 2019. Differential response of sugar beet to long-term mild to severe salinity in a soil-pot culture. Agriculture 9: 223. https://doi.org/10.3390/agriculture9100223
  • Tang X, Mu X, Shao H, Wang H, Brestic M, 2015. Global plant-responding mechanisms to salt stress: physiological and molecular levels and implications in biotechnology. Crit Rev Biotechnol 35: 425-437. https://doi.org/10.3109/07388551.2014.889080
  • Tester M, Davenport R, 2003. Na+ tolerance and Na+ transport in higher plants. Ann Bot 91: 503-527. https://doi.org/10.1093/aob/mcg058
  • Walker RR, Read PE, Blackmore DH, 2008. Rootstock and salinity effects on rates of berry maturation, ion accumulation and colour development in Shiraz grapes. Aust J Grape Wine Res 6: 227-239. https://doi.org/10.1111/j.1755-0238.2000.tb00183.x