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Abstract: In this work, we analyze the combinatorial properties of the category of augmented semi-
simplicial sets. We consider various monoidal structures induced by the co-product, the product, and
the join operator in this category. In addition, we also consider monoidal structures on augmented
sequences of integers induced by the sum and product of integers and by the join of augmented
sequences. The cardinal functor that associates to each finite set X its cardinal |X| induces the
sequential cardinal that associates to each augmented semi-simplicial finite set X an augmented
sequence |X|n of non-negative integers. We prove that the sequential cardinal functor is monoidal for
the corresponding monoidal structures. This allows us to easily calculate the number of simplices
of cones and suspensions of an augmented semi-simplicial set as well as other augmented semi-
simplicial sets which are built by joins. In this way, the monoidal structures of the augmented
sequences of numbers may be thought of as an algebraization of the augmented semi-simplicial sets
that allows us to do a simpler study of the combinatorics of the augmented semi-simplicial finite sets.

Keywords: augmented semi-simplicial set; augmented integer sequence; monoidal category;
simplicial combinatorics

1. Introduction

The main objectives of this work are framed in the study of the combinatorics of
augmented semi-simplicial sets. We can highlight, among others, the following targets:

• The study of some properties about the combinatorics of the faces in semi-simplicial
complexes (polyhedra)

• The analysis of the numerical sequences (sequential cardinals) arising from the combi-
natorial structure of semi-simplicial complexes.

• The development of some semi-simplicial constructions and the search for methods
for counting the number of their faces.

• The study of relationships between such semi-simplicial constructions and their asso-
ciated numerical sequences.

We are considering two kind of mathematical objects:

(i) Augmented semi-simplicial and co-semi-simplicial objects,
(ii) Augmented integer sequences and matrices.

As far as simplicial objects are concerned, we have focused on what we have called
Γop
+ -sets, or augmented semi-simplicial sets. Using this category has its advantages and

drawbacks. On the one hand, we point out that the significant information is given in
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the combinatorics of non-degenerated simplices so that fewer data are necessary for their
coding. Nevertheless, the use of degenerated simplices would allow one to represent sim-
plicially a greater number of continuous maps. Another feature in our study is considering
augmented semi-simplicial objects. This slight modification makes both the structures and
formulas we are using symmetric and much more reduced, so that it helps facilitate their
computation. For notions related with semi-simplicial sets, we refer the reader to [1–5] and
for a study of the realization of semi-simplicial sets [6]. For category models related with
homotopy theory of simplicial sets and topological spaces, see [7].

As basic combinatorial elements, we are considering the following ones:
(bc) Binomial coefficients (If q > p, take (p

q) = 0):(
p
q

)
=

p!
q!(p− q)!

=
p(p− 1) · · · (p− q + 1)

(p− q)!

which give the number of strictly increasing maps from the ordered set with q elements
{1 < · · · < q} to the ordered set of p elements {1 < · · · < p}. These numbers occur as
coefficients in Newton’s binomial formula

(a + b)p =
p

∑
q=0

(
p
q

)
ap−qbq

and the coefficients in Pascal’s triangle

1
1 1

2 2 1
1 3 3 1

1 4 6 4 1
1 5 10 10 5 1

· · · ...
...

...
...

...
...

...
...

...
...

... · · ·
which can also represented by the matrix

0 1 2 3 4 5 6 · · ·
0| (0

0) 0 0 0 0 0 0 · · · 0
1 | (1

0) (1
1) 0 0 0 0 0 · · · 0

2| (2
0) (2

1) (2
2) 0 0 0 0 · · · 0

3| (3
0) (3

1) (3
2) (3

3) 0 0 0 · · · 0
4| (4

0) (4
1) (4

2) (4
3) (4

4) 0 0 · · · 0
5| (5

0) (5
1) (5

2) (5
3) (5

4) (5
5) 0 · · · 0

6| ...
...

...
...

...
...

...
...

...


In order to write this work, we have examined some results about binomial numbers

in the following references: [8–12].
(gc) Numbers associated with certain geometric configurations: Consider integers

d ≥ 0 and n ≥ 1. The d-dimensional n-th triangular number Td
n is inductively defined

as follows:

T0
n = 1, if d = 0

Td
n = ∑n

i=1 Td−1
i , if d ≥ 1.

These numbers are contained in the family of regular polytope numbers , see [13].
When you consider other combinatorial subjects on semi-simplicial sets, there are

many connections with the standard families of sequences and matrices of numbers as
Stirling [14], and chain-power-set numbers [15]. For more information about these types of
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numbers, we refer the reader to [16,17]. Nevertheless, in order to write a shorter paper, we
have focused on analyzing some relations between semi-simplicial finite sets and binomial
and triangular numbers.

In this work, we study a new version of join construction for augmented semi-
simplicial sets which has similar properties to the one developed by P. Ehlers and T.
Porter [18] for augmented simplicial sets. However, one important novelty of our work
is that we endow the category of augmented semi-simplicial finite sets with a categorical
semi-ring structure (i.e., a bimonoidal category structure) that admits a right action of
augmented co-semi-simplicial objects in the category of semi-simplicial finite sets. This
structural enrichment permits an interesting study of the combinatorial properties of the
join operations and constructions obtained by actions. The categorical semi-rings used in
this paper are also called bimonoidal categories [19]. Recent results on these categorical
structures can be seen in [20,21]. Our paper gives interesting new applications of these
structures to the study of combinatorial problems of augmented semi-simplicial finite sets.

In the algebraic context, we consider categories of augmented sequences of integers with
a categorical ring structure that admits actions of certain augmented matrices. This action is
defined by using the inverse matrix of the matrix associated with binomial transformations.

The sequential cardinal functor, denoted by | · |, applies a semi-simplicial finite set
X to the sequence |X|n := |Xn|, where Xn denotes the set of n-simplices of X and |Xn| is
its cardinal. The main results of this paper ensure, on the one hand, that the sequential
cardinal functor is a homomorphism of categorical semi-rings (Theorem 4) and, on the other
hand, that the sequential cardinal functor is compatible with action operators (Theorem 5,
Corollary 6). These results allows us to easily count the number of simplices of a semi-
simplicial finite set built through join and action operations.

A (augmented) simplicial complex is a family of subsets of a finite set F, Σ ⊂ P(F),
such that, if σ ∈ Σ and ∅ 6= σ′ ⊂ σ (σ′ ⊂ σ), then σ′ ∈ Σ. We note that a (augmented)
simplicial complex Σ has a canonical structure of (augmented) semi-simplicial set Σ′, where
Σ′k = {σ ∈ Σ||σ| = k + 1}, k ≥ 0 (k ≥ −1). The f -vector of a (augmented) simplicial
complex f = f (Σ) = ( f0, · · · fn) ( f = f (Σ) = ( f−1, f0, · · · fn)) of a (augmented) simplicial
complex is given by fk = |Σ′|k. Therefore, the notion of f -vector is obtained as a restriction
of sequential cardinal (given in the present work) to augmented simplicial complexes. For
a study of the main properties of f -vectors and their associated h-vectors, we refer the
reader to [22] and for recent advances on the study of f -vectors: [23–25]. In our work,
instead of studying realization problems, we prove new results for semi-simplicial finite
sets by taking the sequential cardinal and obtaining new properties related to join and
action operations on augmented semi-simplicial finite sets.

At the end of the work, we give a concrete example of calculations associated with
constructions given by joins and actions induced by the dunce cap. These calculations are
done by using the inverse matrix of augmented binomial numbers and the augmented
matrix of triangular numbers (Corollaries 12 and 13).

2. Categorical Preliminaries: Presheaves and Monoidal Categories
2.1. Extension of a Small Category to a Cocomplete One Using Presheaves

We will denote as Sets the category of sets.
Given a small category C, we can consider its opposite category Cop. Then, the usual

functor category SetsCop
has as objects functors X : Cop → Sets and as arrows X → X′ all

natural transformations f : X → X′ between such functors. The category SetsCop
is usually

called category of presheaves on C.
For a given object c in C, we can consider Y(c), the presheaf on C defined as the

contravariant Hom-functor Y(c)(−) := HomC(−, c). This construction gives rise to the
well-known Yoneda embedding

Y : C→ SetsCop
, c 7→ HomC(−, c).
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By an embedding in this setting, we mean a full and faithful functor. Any presheaf
which is isomorphic to a presheaf of the form Y(c) is called representable. The Yoneda lemma
is well known, asserting that, for any presheaf, X, there exists a bijection between the
natural transformations Y(c)→ X and the elements of X(c):

Nat(Y(c), X)
∼=→ X(c), α 7→ αc(1c).

Associated with X ∈ SetsCop
, we have the so-called category of elements of X, denoted

by
∫

C X. Its objects are all pairs (c, x), where c is an object in C and x ∈ X(c); a morphism
(c, x) → (c′, x′) in

∫
C X consists of a morphism ϕ : c → c′ in C such that X(ϕ)(x′) = x.

Observe that we have a projection functor

πX :
∫

C
X → C, (c, x) 7→ c.

The proof of the following theorem can be found in [26].

Theorem 1. Let Z : C→ E be a functor from a small category C to a cocomplete category E . Then,
the functor SingZ : E → SetsCop

given by

SingZ(Y)(c) := HomE (Z(c), Y)

admits a left adjoint functor LZ : SetsCop → E , defined for each presheaf X as

LZ(X) := colim(
∫

C
X

πX−→ C Z−→ E)

The functor LZ preserves colimits and makes commutative the following diagram

C� _

Y
��

Z // E

SetsCop
LZ

;;

In other words, LZ is an extension of Z that preserves colimits. Moreover LZ is, up to natural
isomorphism, the only extension of Z preserving all colimits.

Remark 1. Observe that, actually, we have a functor:

SetsCop × EC → E , (X, Z) 7→ LZ(X).

As a particular case, taking E = SetsCop
and Z = Y the Yoneda embedding, we have

that the functor SingZ : SetsCop → SetsCop
is naturally isomorphic to the identity functor

(by the Yoneda lemma). Therefore, LZ must be also naturally isomorphic to the identity
functor so we obtain the following corollary:

Corollary 1. Every presheaf X on C is, up to natural isomorphism, a colimit of representable
presheaves:

X ∼= colim(
∫

C
X

πX−→ C Y−→ SetsCop
).

We also observe that, as a consequence of Theorem 1 above with E = SetsCop
, one has

certain suitable induced functors. Such functors will receive the name of action functors:

Definition 1. The action functors are the following:
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1. (−)B̃(−) : SetsCop × (SetsCop
)C → SetsCop

XB̃Y := LY(X).

2. (−)B̃(−) : (SetsCop
)C × (SetsCop

)C → (SetsCop
)C

(YB̃Z)(c) := Y(c)B̃Z = LZ(Y(c)).

Given X ∈ SetsCop
and Y, Z ∈ (SetsCop

)C, the object XB̃Y ∈ SetsCop
is said to be the

(right) action of Y on X. Similarly, YB̃Z ∈ (SetsCop
)C is said to be the (right) action of Z on Y.

Remark 2. If X ∈ SetsCop
and Y, Z ∈ (SetsCop

)C, then it follows that

(XB̃Y)B̃Z ∼= XB̃(YB̃Z).

This formula inspires the name given: “action functors”.

2.2. Monoidal Categories

In this subsection, we include the definition of monoidal category and that of functors
between monoidal categories. For a more complete study on the notions and properties
related to monoidal categories, we recommend reading the volumes by Niles Johnson and
Donald Yau [19].

Definition 2. A monoidal category is a category C equipped with:

(1) a functor⊗ : C×C→ C out of the product category of C with itself, called the tensor product,
(2) an object I called the unit object or tensor unit, and
(3) three natural isomorphisms:

The associator α, with components

αA,B,C : (A⊗ B)⊗ C
∼=−→ A⊗ (B⊗ C);

The left unitor λ and the right unitor ρ, with components

λA : I ⊗ A
∼=−→ A, ρA : A⊗ I

∼=−→ A,

such that the following diagrams are commutative (coherence diagrams):
Pentagon identity:

((A⊗ B)⊗ C)⊗ D α⊗1 //

α

��

(A⊗ (B⊗ C))⊗ D

α

��
(A⊗ B)⊗ (C⊗ D)

α ))

A⊗ ((B⊗ C)⊗ D)

1⊗αuu
A⊗ (B⊗ (C⊗ D))

Triangle identity:

(A⊗ I)⊗ B α //

ρ⊗1 &&

A⊗ (I ⊗ B)

1⊗λxx
A⊗ B
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By a strict monoidal category, we mean a monoidal category in which the natural isomorphisms
α, λ, ρ are identities. In this case, the pentagon and triangle diagrams commute automatically.

Definition 3. A symmetric monoidal category is a monoidal category (C,⊗, I) having a natural
transformation s (it is necessarily a natural isomorphism) called the braiding, with components
sA,B : A⊗ B→ B⊗ A, making commutative the following kind of diagram:

B⊗ A
sB.A

$$
A⊗ B

sA,B
::

id
// A⊗ B

That is, s−1
A,B = sB,A. Moreover, we also demand that the braiding and the associator obey the

hexagon identity:

(A⊗ B)⊗ C α //

s⊗1
��

A⊗ (B⊗ C) s // (B⊗ C)⊗ A

α

��
(B⊗ A)⊗ C

α
// B⊗ (A⊗ C)

1⊗s
// B⊗ (C⊗ A)

If, in addition, the monoidal category is strict, we will say that C is a strict symmetric monoidal
category.

Definition 4. A functor F : C→ C′ between monoidal categories is said to be 2-monoidal if it is
equipped with a natural isomorphism Φ with components ΦA,B : F(A)⊗ F(B)

∼=−→ F(A⊗ B),
such that the following diagram commutes for any objects A, B, C in C:

(F(A)⊗ F(B))⊗ F(C)

α

��

Φ⊗1 // F(A⊗ B)⊗ F(C) Φ // F((A⊗ B)⊗ C)

F(α)
��

F(A)⊗ (F(B)⊗ F(C))
1⊗Φ

// F(A)⊗ F(B⊗ C)
Φ
// F(A⊗ (B⊗ C))

We say that F is (2, 0)-monoidal (or just monoidal in classical terminology) if, in addition,
there exists an isomorphism φ : I

∼=→ F(I) satisfying that the following diagrams are commutative
for any object A in C:

I ⊗ F(A)
λ //

φ⊗1
��

F(A) F(A)⊗ I
ρ //

1⊗φ

��

F(A)

F(I)⊗ F(A)
Φ
// F(I ⊗ A)

F(λ)

OO

F(A)⊗ F(I)
Φ
// F(A⊗ I)

F(ρ)

OO

Finally, a 2-monoidal (or (2, 0)-monoidal) functor F : C→ C′ between symmetric monoidal
categories is said to be symmetric if it satisfies the following commutative diagram, for any objects
A, B in C:

F(A)⊗ F(B)

Φ
��

s′ // F(B)⊗ F(A)

Φ
��

F(A⊗ B)
F(s)

// F(B⊗ A)

Remark 3. In this paper, we use the terminology of categorical semi-ring for the notion of a
symmetric bimonoidal category given in Definition 2.1.1 in [27], see also [19,28]. Moreover, some of
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the examples we are studying are a particular case that has the structure of a distributive symmetric
monoidal category given in Definition 2.3.1 in [19]. For general information about monoidal
categories, we refer the reader to [29–31]. Some interesting relations between monoidal categories
and classifying spaces are given in [32] and, for new advances in the study of monoidal categories,
you can see [33–35].

In the following paragraphs, we include the notion of a free strict monoidal category
generated by a category.

For any given category C, the free monoidal category over C, denoted as Free(C), is
given as follows:

• Its objects are finite sequences (A1, · · · , An) of objects in C. The empty sequence is
also considered, and it is taken as the unit object I.

• Consider two objects (A1, · · · , Am) and (B1, · · · , Bn) in Free(C). If m = n, then a

morphism (A1, · · · , An)
f→ (B1, · · · , Bn) consists of a sequence f = ( f1, ..., fn) where

fi : Ai → Bi is a morphism in C, for all i ∈ {1, ..., n}. If n 6= m, then there are no
morphisms between (A1, · · · , Am) and (B1, · · · , Bn).

The tensor product of two finite sequences A = (A1, · · · , Am) and B = (B1, · · · , Bn)
is defined as their concatenation

A⊗ B := (A1, · · · Am, B1, · · · Bn)

Analogously, the tensor product of two morphisms in Free(C) is given by the corre-
sponding concatenation of morphisms in C. One can straightforwardly check that Free(C)
is a strict monoidal category. In addition, observe that we have a canonical functor

in : C ↪→ Free(C),

which is, actually, a full embedding.
Any monoidal category that is isomorphic (in the monoidal sense) to a free monoidal

category will be also called free monoidal category.
The free monoidal category Free(C) has the following universal property:

Proposition 1. Let F : C→ D be a functor between a category C and a strict monoidal category
D = (D,⊗D, ID). Then, there exists a (2, 0)-monoidal functor, which is unique up to isomorphism,
making commutative the following triangle:

C� _

in
��

F // D

Free(C)
ext(F)

;;

Proof. The functor is defined as ext(F)(I) := ID and ext(F)(A) := F(A), for every object A
in C. In addition, ext(F)(A1, A2) := F(A1)⊗D F(A2) for every object (A1, A2) of length 2.
Now, if ext(F) is defined for sequences of objects of length n− 1, then we may inductively
define

ext(F)(A1, · · · , An) := ext(F)(A1, ..., An−1)⊗D F(An).

F is similarly defined for morphisms. The rest of the proof is lengthy but straightfor-
ward.

Remark 4. In the context of monoidal categories, it is interesting to take into account the following
result, whose proof can be found in [36]:

MacLane’s Theorem. Given a monoidal category C, there exist a strict monoidal category
C′ together with a monoidal equivalence F : C→ C′. Similarly, given a braided (resp. symmetric)
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monoidal category C, there exist a strict braided (resp. symmetric) monoidal category C′ with a
braided (resp. symmetric) monoidal equivalence F : C→ C′.

2.3. Extending Monoidal Structures to Presheaves

Consider C = (C,⊗, I) a small monoidal category. We will see that the monoidal
structure on C can be extended to the category of presheaves SetsCop

. Indeed, first of all,
observe that we have a diagram given by two rectangles

C× C� _

Y×Y
��

C× C ⊗ //
� _

Y
��

C� _

Y
��

SetsCop × SetsCop

×̄
// Sets(C×C)op

LY◦⊗
// SetsCop

where ×̄ : SetsCop × SetsCop → Sets(C×C)op
is the natural functor induced by the product

of sets: (X×̄Y)(c, c′) := X(c) × Y(c′); and the functor LY◦⊗ is the colimit-preserving
extension of the composite functor Z := Y ◦ ⊗ : C × C → SetsCop

given after using
Theorem 1. Composing these two rectangles and denoting as ⊗̃ the composite LY◦⊗ ◦ ×̄,
we obtain a commutative diagram:

C× C� _

Y×Y
��

⊗ // C� _

Y
��

SetsCop × SetsCop

⊗̃
// SetsCop

Moreover, we can also consider the Yoneda object Ĩ := Y(I).

Theorem 2. (SetsCop
, ⊗̃, Ĩ) is a monoidal category and the Yoneda embedding, Y : (C,⊗, I)→

(SetsCop
, ⊗̃, Ĩ), is (2, 0)-monoidal.

Proof. In order to prove that (SetsCop
, ⊗̃, Ĩ) is a monoidal category one has just to take

into account that any presheaf on C is naturally isomorphic to a colimit of representable
presheaves (see Corollary 1) and that (C,⊗, I) is monoidal. We leave the details to the
reader. The Yoneda embedding is (2, 0)-monoidal by the above commutative diagram
relating ⊗ and ⊗̃; moreover, Ĩ = Y(I) by definition.

Now, we want to extend Theorem 1 for the special case E = SetsCop
when we consider

monoidal structures. In order to do this, we need some previous results. Assume I and
J are small categories and X : I → Sets, Y : J → Sets functors. Then, the existence of a
natural isomorphism is well known:

colimi∈IXi × colimj∈JYj
∼= colim(i,j)∈I×J (Xi ×Yj).

By how the functor ×̄ : SetsCop × SetsCop → Sets(C×C)op
is defined, it is straightfor-

ward to check that this property also holds when we have functors X : I → SetsCop
and

Y : J → SetsCop
:

(colimi∈IXi)×̄(colimj∈JYj) ∼= colim(i,j)∈I×J (Xi×̄Yj).
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Indeed, for any object (c, c′) in the product category C× C, we have

[(colimi∈IXi)×̄(colimj∈JYj)](c, c′) ∼= (colimi∈IXi)(c)× (colimj∈JYj)(c′)
∼= colimi∈IXi(c)× colimj∈JYj(c′)
∼= colim(i,j)∈I×J (Xi(c)×Yj(c′))
∼= colim(i,j)∈I×J ((Xi×̄Yj)(c, c′))
∼= [colim(i,j)∈I×J ((Xi×̄Yj)](c, c′).

For more results related to Theorem 2, we refer the reader to [37,38].
Taking into account this latter natural isomorphism, we have the following result:

Proposition 2. Consider I , J small categories and functors X : I → SetsCop
, Y : J → SetsCop

.
Then, there exists a natural isomorphism

(colimi∈IXi)⊗̃(colimj∈JYj) ∼= colim(i,j)∈I×J (Xi⊗̃Yj).

Proof. Considering the previous comments and taking into account that the functor LY◦⊗ :
Sets(C×C)op → SetsCop

preserves colimits, we have:

(colimi∈IXi)⊗̃(colimj∈JYj) = LY◦⊗((colimi∈IXi)×̄(colimj∈JYj))
∼= LY◦⊗(colim(i,j)∈I×J (Xi×̄Yj))
∼= colim(i,j)∈I×J (LY◦⊗(Xi×̄Yj))
∼= colim(i,j)∈I×J (Xi⊗̃Yj).

Remember that, by using Theorem 1 when E = SetsCop
, for any given functor Z :

C → SetsCop
, there exists a colimit preserving functor LZ : SetsCop → SetsCop

such that
LZ ◦ Y = Z. When Z is (2, 0)-monoidal, we can say more about LZ.

Theorem 3. Let Z : C → SetsCop
be a (2, 0)-monoidal functor. Then, the colimit-preserving

functor LZ : SetsCop → SetsCop
, which makes commutative the diagram

C� _

Y
��

Z // SetsCop

SetsCop
LZ

99

is (2, 0)-monoidal. Moreover, up to isomorphism, it is the unique colimit preserving functor making
this diagram commutative.

Proof. Consider X and Y presheaves over C. We know by Corollary 1 that, up to natural
isomorphism, any presheaf is the colimit of representable presheaves. Therefore, we can
suppose that

X ∼= colimi∈I Y(ci) and Y ∼= colimj∈J Y(cj).



Mathematics 2022, 10, 590 10 of 37

Therefore,

LZ(X⊗̃Y) ∼= LZ((colimi∈I Y(ci))⊗̃(colimj∈J Y(cj)))
∼= LZ(colim(i,j)∈I×J (Y(ci)⊗̃Y(cj)))
∼= colim(i,j)∈I×J LZ(Y(ci)⊗̃Y(cj))
∼= colim(i,j)∈I×J LZ(Y(ci ⊗ cj))
∼= colim(i,j)∈I×J Z(ci ⊗ cj)
∼= colim(i,j)∈I×J (Z(ci)⊗̃Z(cj))
∼= (colimi∈I Z(ci))⊗̃(colimj∈J Z(cj))
∼= (colimi∈I LZ(Y(ci)))⊗̃(colimj∈J LZ(Y(cj)))
∼= LZ(colimi∈I Y(ci))⊗̃LZ(colimj∈J Y(cj))
∼= LZ(X)⊗̃LZ(Y).

Moreover, LZ( Ĩ) = LZ(Y(I)) = Z(I) ∼= Ĩ. Checking that the coherence diagrams are
indeed commutative is lengthy but straightforward.

Remark 5. Observe that Theorem 3 above can be easily generalized for any (2, 0)-monoidal functor
Z : C → E , where E = (E ,⊗E , IE ) is a monoidal cocomplete category satisfying the additional
condition that, for any two diagrams X : I → E , Y : J → E , there exists a natural isomorphism

(colimi∈IXi)⊗E (colimj∈JYj) ∼= colim(i,j)∈I×J (Xi ⊗E Yj).

We have an extension functor LZ : SetsCop → E that is (2, 0)-monoidal. Moreover, up to iso-
morphism, LZ is the unique colimit preserving functor making the following diagram commutative

C� _

Y
��

Z // E

SetsCop
LZ

;;

3. Augmented Semi-Simplicial Sets

In this section, we will deal with the combinatorial objects we are interested in for
this work, the augmented semi-simplicial sets. As we are about to see, the category
of augmented semi-simplicial sets is defined as the category of presheaves on a certain
small category.

3.1. Basic Notions and Results

Consider the small category Γ whose objects are non-empty totally ordered sets
[p] = {0 < · · · < p} for p ≥ 0 and whose morphisms are the strictly increasing maps
[p]→ [q]. We can add the empty set ∅ = [−1] to this category together with all the strictly
increasing maps. The new augmented category will be denoted by Γ+.

We can consider SetsΓ
op
+ and SetsΓ+ , the presheaf categories on Γ+ and on Γ

op
+ , respec-

tively. Taking E = SetsΓ
op
+ , C = Γ+, and considering the notation XB̃Y for LY(X) given in

Definition 1 we have the following action functors:

SetsΓ
op
+ × (SetsΓ

op
+ )Γ+ → SetsΓ

op
+ , (X, Y) 7→ XB̃Y,

(SetsΓ
op
+ )Γ+ × (SetsΓ

op
+ )Γ+ → (SetsΓ

op
+ )Γ+ , (Y, Z) 7→ YB̃Z.

We obviously have the corresponding Yoneda embeddings:

Y : Γ+ → SetsΓ
op
+ , Yop : Γ

op
+ → SetsΓ+ .
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For any object [n] in Γ+, we will denote as Γ+[n] the representable presheaf

Γ+[n] := Y([n]) = HomΓ+(−, [n]) ∈ SetsΓ
op
+ .

Analogously, we will consider the notation

Γ
op
+ [n] := Yop([n]) = HomΓ+([n],−) ∈ SetsΓ+ .

Definition 5. Any presheaf on Γ+

X : Γ
op
+ → Sets

will be called augmented semi-simplicial set or Γ
op
+ -set. Analogously, any presheaf on Γ

op
+ , Z :

Γ+ → Sets, will be called augmented co-semi-simplicial set or Γ+-set.

We point out that giving an augmented semi-simplicial set X ∈ SetsΓ
op
+ is equivalent to

giving a collection of sets {Xn}n≥−1 together with a collection of set maps dn
i : Xn → Xn−1

(n ≥ 0 and 0 ≤ i ≤ n) satisfying

dn
i ◦ dn+1

j = dn
j−1 ◦ dn+1

i , if i < j.

Moreover, giving an arrow f : X → X̄ in SetsΓ
op
+ (i.e., a natural transformation) is

equivalent to giving a collection of set maps { fn : Xn → X̄n}n≥−1 such that

fn−1 ◦ dn
i = d̄n−1

i ◦ fn,

for n ≥ 0 and 0 ≤ i ≤ n.
There is a similar description for the category of augmented co-semi-simplicial sets by

just reversing the arrows in the above representation.
In this work, we also consider the subcategory of finite sets Setsfin and the correspond-

ing category of presheaves (Setsfin)
Γ

op
+ .

A semi-simplicial set X ∈ SetsΓ
op
+ is said to have finite dimension if there is k ∈ N+ such

that Xi = ∅ for every i > k. Given a non-empty finite dimensional semi-simplicial set X,
we denote

dim(X) := min{k | Xi = ∅ for all i > k, i ∈ N+}
For the empty semi-simplicial set, we set dim(∅) := −∞
The subcategory of finite dimensional semi-simplicial sets is denoted by (SetsΓ

op
+ )fd.

A semi-simplicial set X ∈ SetsΓ
op
+ is said to be finite if it has finite dimension and for every

i ∈ N+, Xi is a finite set. The subcategory of finite semi-simplicial sets is denoted by
(SetsΓ

op
+ )fin.

3.2. Products and Coproducts

The usual product × and coproduct t of sets induce, in a natural way, two symmetric
monoidal category structures in Sets with unit objects the singleton 1 and the empty set ∅,
respectively.

Given X, Y ∈ SetsΓ
op
+ , we have the product X×Y and the coproduct X tY, which are

straightforwardly induced by the corresponding coproduct and product in Sets. For any
given set A ∈ Sets, we can consider the constant Γ

op
+ -set, ΓA

+, defined as (ΓA
+)k = A, for all

k ≥ −1. In particular, we are interested in the constant Γ
op
+ -sets, Γ∅

+ and Γ1
+. It is plain to

check the following natural isomorphisms:

X t (Y t Z) ∼= (X tY) t Z,

Γ∅
+ t X ∼= X ∼= X t Γ∅

+,
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X× (Y× Z) ∼= (X×Y)× Z,

Γ1
+ × X ∼= X ∼= X× Γ1

+,

X×Y ∼= Y× X, X tY ∼= Y t X.

Note that the subcategory Setsfin is closed by finite sums and products and that ∅, 1
are finite sets.

Therefore, we obtain the following result:

Proposition 3. The sum and the product induce the following structures:

(i) (SetsΓ
op
+ ,t, Γ∅

+) and (SetsΓ
op
+ ,×, Γ1

+) are symmetric monoidal categories.

(ii) ((Setsfin)
Γ

op
+ ,t, Γ∅

+) and ((Setsfin)
Γ

op
+ ,×, Γ1

+) are symmetric monoidal categories.
(iii) the canonical inclusions

((Setsfin)
Γ

op
+ ,t, Γ∅

+)→ (SetsΓ
op
+ ,t, Γ∅

+)

((Setsfin)
Γ

op
+ ,×, Γ1

+)→ (SetsΓ
op
+ ,×, Γ1

+)

are (2, 0)-monoidal functors.

Moreover, we also have the natural isomorphism relating the two tensor products:

X× (Y t Z) ∼= (X×Y) t (X× Z).

We also observe that, for every [n] ∈ Γ+, one has the evaluation functor

evn : SetsΓ
op
+ → Sets, X 7→ Xn

that preserves the (co)product, and the units. In particular, we can consider (2, 0)-monoidal
functors

evn : (SetsΓ
op
+ ,t, Γ∅

+)→ (Sets,t, ∅),

evn : (SetsΓ
op
+ ,×, Γ1

+)→ (Sets,×, 1).

Remark 6. It is obvious that Γ∅
+ ∈ (SetsΓ

op
+ )fin. Therefore, ((SetsΓ

op
+ )fin,t, Γ∅

+) is a symmetric

monoidal category. On the other hand, Γ1
+ 6∈ (SetsΓ

op
+ )fin, indicating that ((SetsΓ

op
+ )fin,×, Γ1

+) is

not a monoidal category. However, taking the full subcategory (SetsΓ
op
+ )fin ∪ {Γ1

+}, one has that

((SetsΓ
op
+ )fin ∪ {Γ1

+},×, Γ1
+) is a monoidal category.

3.3. Join, Cone, and Suspension Constructions in Augmented Semi-Simplicial Sets

Now, we will consider special constructions in Γ
op
+ -sets, or augmented semi-simplicial

sets. We first observe that the small category Γ+ has a symmetric monoidal category
structure induced by the coproduct (actually, the ordinal sum)

[p] t [q] := [p + q + 1]

having [−1] as a unit object.
We define the join of Γ

op
+ -sets as the natural extension of this ordinal sum to SetsΓ

op
+

(see Section 2.3). We obtain the join functor

� : SetsΓ
op
+ × SetsΓ

op
+ → SetsΓ

op
+ .
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It is immediate to check that, for any pair of Γ
op
+ -sets, X, Y, their join is given as

(X�Y)m :=
⊔

p+q=m−1

Xp ×Yq

where p and q run over the integers that are greater than or equal to −1. In particular,
(X�Y)−1 = X−1 × Y−1, (X�Y)0 = (X−1 × Y0) t (X0 × Y−1), (X�Y)1 = (X−1 × Y1) t
(X0 ×Y0) t (X1 ×Y−1) and so on.

Moreover, the operators dX�Y
i of X�Y are naturally defined from the operators dX

k
and dY

l of X and Y, respectively. The definition of � on morphisms is straightforward.

For any pair X, Y ∈ SetsΓ
op
+ , we have that the functors

X� (−), (−)�Y : SetsΓ
op
+ → SetsΓ

op
+

preserve colimits. Furthermore, if X, Y, Z ∈ SetsΓ
op
+ , then there exist canonical natural

isomorphisms
X� (Y� Z) ∼= (X�Y)� Z,

Γ+[−1]� X ∼= X ∼= X� Γ+[−1],

X�Y ∼= Y� X.

Corollary 2. The category SetsΓ
op
+ , together with the join functor �, the unit object Γ+[−1], and

the natural isomorphisms above, is a symmetric monoidal category. Moreover, the Yoneda embedding

Y : (Γ+,t, [−1])→ (SetsΓ
op
+ ,�, Γ+[−1])

is (2, 0)-monoidal.

Proof. This is a direct consequence of Theorem 2.

Remark 7. Note that ((SetsΓ
op
+ )fin,�, Γ+[−1]) is a monoidal subcategory of

((Setsfin)
Γ

op
+ ,�, Γ+[−1]), which is a monoidal subcategory of (SetsΓ

op
+ ,�, Γ+[−1]). If X, Y ∈

(SetsΓ
op
+ )fin, one has that:

dim(X�Y) = (dim(X) + 1) + (dim(Y) + 1)− 1 = dim(X) + dim(Y) + 1.

Corollary 3. Given n, m ∈ N+, the following isomorphism holds true

Γ+[n]� Γ+[m] ∼= Γ+[n + m + 1].

We have the left-cone functor Conl := Γ+[0]� (−) and the right-cone functor Conr :=
(−)� Γ+[0]:

Conl , Conr : SetsΓ
op
+ → SetsΓ

op
+

Conl(X) = Γ+[0]� X,

Conr(X) = X� Γ+[0].

These functors make the following squares commutative:

Γ+� _

Y
��

[0]t(−) // Γ+� _

Y
��

Γ+� _

Y
��

(−)t[0] // Γ+� _

Y
��

SetsΓ
op
+

Conl

// SetsΓ
op
+ SetsΓ

op
+

Conr

// SetsΓ
op
+ .
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Corollary 4. Conl and Conr satisfy

Conl(Γ+[k]) = Γ+[k + 1] = Conr(Γ+[k])

for all k ≥ −1.

Now, consider the augmented 0-sphere

S+[0] = Γ+[1] \ {ι1}

where ι1 denotes the identity of [1] ∈ Γ+.
Then, as a particular case of the join construction, and similarly to the case of the

cones, we have the augmented left-suspension functor Susl = S+[0]� (−) and the augmented
right-suspension functor Susr = (−)� S+[0] (see Figures 1, 2):

Susl , Susr : SetsΓ
op
+ → SetsΓ

op
+

Susl(X) = S+[0]� X

Susr(X) = X� S+[0]

LQr- +QMbB/2` i?2 �m;K2Mi2/ 0@bT?2`2

S+[0] = Γ+[1] \ {ι1} URjV

r?2`2 ι1 /2MQi2b i?2 B/2MiBiv Q7 [1] ∈ Γ+.

h?2M- �b � T�`iB+mH�` +�b2 Q7 i?2 DQBM +QMbi`m+iBQM- �M/ bBKBH�`Hv �b i?2 +�b2 Q7
i?2 +QM2b- r2 ?�p2 i?2 �m;K2Mi2/ H27i@bmbT2MbBQM 7mM+iQ` ambl = S+[0] ! (−)
�M/ i?2 �m;K2Mi2/ `B;?i@bmbT2MbBQM 7mM+iQ` ambr = (−) ! S+[0],

ambl, ambr : SetsΓop
+ → SetsΓop

+

ambl(X) = S+[0] ! X UR9V
ambr(X) = X ! S+[0] UR8V

6B;m`2 R, h?2 DQBM S+[0] ! S+[0] ! S+[0]

6B;m`2 k, h?2 DQBM S+[0] ! S+[0] ! S+[0] ! S+[0]

ky

Figure 1. The join S+[0]� S+[0]� S+[0].

Figure 2. The join S+[0]� S+[0]� S+[0]� S+[0].

3.4. Action Functors and Triangle Products

We can consider SetsΓ
op
+ and SetsΓ+ , the presheaf categories on Γ+ and Γ

op
+ , respec-

tively. Remember that taking E = SetsΓ
op
+ , C = Γ+, and, considering the notation XB̃Y

given in Definition 1, we have the action functors:

SetsΓ
op
+ × (SetsΓ

op
+ )Γ+ → SetsΓ

op
+ , (X, Y) 7→ XB̃Y

(SetsΓ
op
+ )Γ+ × (SetsΓ

op
+ )Γ+ → (SetsΓ

op
+ )Γ+ , (Y, Z) 7→ YB̃Z

We observe that the cylinder and the barycentric subdivision of a semi-simplicial set
can be obtained by using action functors and some particular co-semi-simplical objects
Z ∈ (SetsΓ

op
+ )Γ+ .

Remark 8. If Γ+|[−1],[0] denotes the full subcategory of Γ+ whose objects are [−1] and [0], then it
is plain to check that, up to isomorphism, Γ+ together with the coproduct (ordinal sum) is isomorphic
to the free monoidal category over Γ+|[−1],[0]. This fact will be crucial for the next reasoning.
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Let C be any category. Then, in order to consider a functor F : Γ+|[−1],[0] → C, one has
just to give a morphism f : X−1 → X0 in C. Moreover, if C = (C,⊗, I) is monoidal, one
can take the particular case X−1

∼= I. The following result is a consequence of Remark 8
and Proposition 1.

Corollary 5. Let C = (C,⊗, I) be a monoidal category and F : Γ+|[−1],[0] → C the functor given
by a morphism f : I → X. Then, there exists a (2, 0)-monoidal functor extending F:

Γ+|[−1],[0]� _

in
��

F // C

Γ+

ext(F)

;;

which is given by ext(F)[n] = ⊗n
0 X, ext(F)[−1] = I and ext(F)([−1] → [0]) = f . Moreover,

ext(F) : (Γ+,t, [−1]) → (C,⊗, I) is, up to isomorphism, the unique (2, 0)-monoidal extension
of F.

Definition 6. Let C = (C,⊗, I) be a monoidal category, f : I → X a morphism in C and F :
Γ+|[−1],[0] → C the functor induced by f . Then, the (2, 0)-monoidal extension ext(F) : (Γ+,t, [−1])
→ (C,⊗, I) is said to be the co-semi-simplicial extension of f and it is denoted by⊗ f X(= ext(F)).
When there is a unique morphism f from I to X, we can use the notation ⊗X, deleting f in ⊗ f X,
and we say the ⊗X is the co-semi-simplicial extension of X.

Definition 7. Let Z : Γ+ → SetsΓ
op
+ be a functor. If X ∈ SetsΓ

op
+ , then the object XB̃Z is said

to be the tilde-triangle product of X and Z. If f : Γ+[−1] → Y is a morphism in SetsΓ
op
+ , then

XB f Y := XB̃(⊗ f Y) is said to be the f -triangle product of X and Y. When there is a unique
morphism f from Γ+[−1] to Y, XB f Y is simply denoted as XBY, and it is said to be the triangle
product of X and Y.

The following result is a direct consequence of Theorem 3. We recall again that we are
using the particular notation (−)B̃Z for the construction LZ(−):

Corollary 6. Let Z : (Γ+,t, [−1])→ (SetsΓ
op
+ ,�, Γ+[−1]) be a (2, 0)-monoidal functor. Then,

the colimit-preserving functor (−)B̃Z : SetsΓ
op
+ → SetsΓ

op
+ , which makes commutative the

diagram

Γ+� _

Y
��

Z // SetsΓ
op
+

SetsΓ
op
+

(−)B̃Z

::

is (2, 0)-monoidal. In particular, for all X, Y ∈ SetsΓ
op
+ , we have

(X�Y)B̃Z ∼= (XB̃Z)� (YB̃Z).

Moreover, up to isomorphism, it is the unique colimit preserving functor making this diagram
commutative.

Remark 9. The monoidal category ((SetsΓ
op
+ )fin,�, Γ+[−1]) is a monoidal subcategoy of

((Setsfin)
Γ

op
+ ,�, Γ+[−1]) which is, in turn, a monoidal subcategoy of (SetsΓ

op
+ ,�, Γ+[−1]). Ob-

serve that:

(i) if Z : (Γ+,t, [−1]) → ((Setsfin)
Γ

op
+ ,�, Γ+[−1]) is a (2, 0)-monoidal functor, then we

obtain (−)B̃Z : (Setsfin)
Γ

op
+ → (Setsfin)

Γ
op
+ a (2, 0)-monoidal functor.
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(ii) if Z : (Γ+,t, [−1])→ ((SetsΓ
op
+ )fin,�, Γ+[−1]) is a (2, 0)-monoidal functor, then we also

obtain that (−)B̃Z : (SetsΓ
op
+ )fin → (SetsΓ

op
+ )fin is a (2, 0)-monoidal functor.

4. Augmented Integer Sequences and Matrices

Once we have analyzed some nice categorical and combinatorial properties of the
category of augmented semi-simplicial sets, we study the second kind of mathematical
objects in this work: augmented integer sequences (and matrices). The connection between
these two different worlds will become clear in the next section through the cardinal functor.

4.1. The Categories Z, N+, Z and Some Functor Categories

We know that the set of integer numbers Z admits the structure of a discrete category.
However, we can also consider it as a groupoid Z where the cardinal |HomZ(n, m)| = 1
and the unique morphism from n to m can be denoted as m− n : n→ m, for every pair of
integers n, m. The sum of integers can be easily extended to a functor

+ : Z× Z→ Z, (n, m) 7→ n + m.

Taking + as a tensor product and 0 as a unit object, it is immediate to check that
(Z,+, 0) has the structure of a strict symmetric monoidal category and also of a strict
categorical group.

Remark 10. By a categorical group, we mean a monoidal category C which is also a groupoid and
there exists a functor (−)∗ : C→ C together with natural isomorphisms m, n and with components
mA : A⊗ A∗ → I, nA : A∗ ⊗ A → I satisfying that, for every object A, the following diagram
is commutative:

(A⊗ A∗)⊗ A α //

m⊗1
��

A⊗ (A∗ ⊗ A)

1⊗n
��

I ⊗ A
λ

// A A⊗ I
ρ

oo

Roughly speaking, every object is invertible, up to natural isomorphism, with respect to the
tensor product. In addition, if C is strict as a monoidal category and the natural isomorphisms m, n
are identities, then we have that C is a strict categorical group.

It is plain to check that, given any small category J, the functor category ZJ has an
induced strict symmetric monoidal category structure (in addition, it is a strict symmetric
categorical group). We shall consider (ZJ)fin the full subcategory of ZJ consisting of
functors c : J→ Z such that there exists a finite set of objects Fc satisfying that c(j) = 0 for
all j ∈ J \ Fc.

Now, if N denotes that the set of natural numbers (0 is also included as a natural
number), take the discrete category N+ = N∪ {−1}. This category can be considered as a
subcategory of both Γ+ and Γ

op
+ through the (inclusion) functor n→ [n]. Observe that the

category N+ is self-dual, that is, N+ = Nop
+ .

Given a functor c ∈ (ZNop
+ )fin with c 6= 0, we will call dimension of c the integer

dim(c) := min{k | ci = 0 for all i > k, i ∈ N+}

and, for c = 0, we take
dim(c) := −∞

Taking into account that Nop
+ is a discrete category, we have that the Yoneda embedding

Y : N+ → SetsN
op
+ associated with N+ (note that this functor is a restriction of the Yoneda

functor Y : Γ+ → SetsΓ
op
+ ) induces, by applying the cardinal operator to the corresponding
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hom-sets, a functor y : N+ → ZNop
+ satisfying y(n)(j) = δn,j, for all n, j ∈ N+. Here, δn,j

denotes the Kronecker delta

δn,j =

{
1, n = j
0, n 6= j

Therefore, y(n) ∈ (ZNop
+ )fin and dim(y(n)) = n, for all n ∈ N+. This way, we actually

have a functor
y : N+ → (ZNop

+ )fin.

In the following result, we may think that the monoidal category C is Z. Thus, we will
keep the notation + for the tensor product and 0 for the unit.

Proposition 4. Let (C,+, 0) be a strict symmetric categorical group. If Z : N+ → C is any
functor, then there exists, up to natural isomorphism, a unique (2, 0)-monoidal functor

(−) · Z : (ZNop
+ )fin → C, c 7→ c · Z

making the following diagram commutative:

N+

y
��

Z // C

(ZNop
+ )fin

(−)·Z

<<

Proof. Given any integer λ ∈ Z and any object a ∈ C, we can define, in a natural way,
another object λa ∈ C (similarly aλ) given from the tensor product + in (C,+, 0) and the
existence of the inverse object. Namely,

λa :=



a + . . . + a︸ ︷︷ ︸
λ times

, if λ > 0

0, if λ = 0
a∗ + . . . + a∗︸ ︷︷ ︸
−λ times

, if λ < 0

Now, consider a functor c ∈ (ZNop
+ )fin. If we denote ck = c(k) ∈ Z and Zk := Z(k) ∈ C,

then we define
((−) · Z)(c) = c · Z := ∑

k∈N+

ckZk,

which is well defined since it is a finite sum. Note that, if c 6= 0, we have

((−) · Z)(c) = c · Z =
dim(c)

∑
k=−1

ckZk.

In addition, (−) · Z is accordingly defined for morphisms so that we obtain a functor.
A straightforward inspection proves that such a functor makes the diagram commutative,
and it is (2, 0)-monoidal. Moreover, it is unique up to natural isomorphism, satisfying these
properties.

Remark 11. We point out that the functor

(−) · Z : ((ZNop
+ )fin,+, 0)→ (C,+, 0)

is always (2, 0)-monoidal regardless of whether the functor Z is (2, 0)-monoidal or not. This means
that ((ZNop

+ )fin,+, 0) is the free (strict) symmetric categorical group in the discrete category N+.
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Remark 12. We have a dual version of Proposition 4. If we take a functor Z : Nop
+ → C, then

there exists, up to natural isomorphism, a unique (2, 0)-monoidal functor Z · (−) : (ZN+)fin →
C, c 7→ Z · c, which is an extension of Z.

Definition 8. An augmented integer sequence is a functor

a : Nop
+ → Z.

More generally, given any category C, we call augmented sequence in C any functor a :
Nop
+ → C. We will denote an augmented sequence a by means of a row matrix

a = (a−1 a0 a1 a2 · · · ).

However, in some cases, this row matrix will be denoted by (using commas): a = (a−1, a0, a1,
a2, · · · ).

Analogously, an augmented integer co-sequence is a functor b : N+ → Z. More generally,
for a given category C, an augmented co-sequence in C is a functor b : N+ → C. We will denote an
augmented co-sequence b by means of a column matrix

b =


b−1
b0
b1
...


or b = (b−1 b0 b1 · · · )T , where T denotes the transposition operator.

Remark 13. Observe that, in the definition above, we have given two different names to the same
mathematical object (remember that N+ is self-dual). Nevertheless, associated with each name, we
are using a different notation, which will be crucial when we consider matrix products later on.

Definition 9. An augmented integer matrix is a functor U : N+ ×Nop
+ → Z. In general, given

a category C, an augmented matrix with entries in C is just a functor U : N+ ×Nop
+ → C. An

augmented matrix U will be denoted by its usual form

U =


U−1,−1 U−1,0 U−1,1 · · ·
U0,−1 U0,0 U0,1 · · ·
U1,−1 U1,0 U1,1 · · ·

...
...

...
. . .


Remark 14. For any given categories A, B, C, there are canonical isomorphisms A× B ∼= B×A
and CA×B ∼= (CA)B. Therefore, we have induced isomorphisms

(CN+)N
op
+ ∼= CN+×Nop

+ ∼= CNop
+ ×N+ ∼= (CNop

+ )N+ .

As a consequence, any augmented matrix U : N+ ×Nop
+ → C may be considered as an object

in any of the categories above.

Definition 10. Let (C,+, 0) be a strict symmetric categorical group. The following functors will
be called dot-products:

(−) · (−) : (ZNop
+ )fin × CN+ → C, (c, Z) 7→ c · Z := ∑

k∈N+

ckZk

(−) · (−) : CNop
+ × (ZN+)fin → C, (Y, b) 7→ Y · b := ∑

k∈N+

Ykbk
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Remark 15. If (C,+, 0) is a strict symmetric categorical group and we consider the subcategory
(CN+)fin of those functors Z : N+ → C satisfying that there is k ∈ N+ with Zl = 0 for l ≥ k

((CNop
+ )fin is analogously defined), then we also have natural dot-products:

(−) · (−) : ZNop
+ × (CN+)fin → C, (c, Z) 7→ c · Z := ∑

k∈N+

ckZk

(−) · (−) : (CNop
+ )fin × ZN+ → C, (Y, b) 7→ Y · b := ∑

k∈N+

Ykbk

In this case, the functors (−) · Z : (ZNop
+ ,+, 0) → (C,+, 0), Y · (−) : (ZNop

+ ,+, 0) →
(C,+, 0) are also (2, 0)-monoidal.

4.2. Multiplication (Dot-Product) of Augmented Matrices

Now, we see how matrix multiplication is induced by the categorical group structure.
Consider (C,+, 0) = (Z,+, 0); if a ∈ (ZNop

+ )fin and b : N+ → C is any functor, then we
have that they are of the form

a = (a−1, a0, a1, · · · an, 0, 0, 0, · · · ) and b = (b−1, b0, b1, b2, b3, · · · )T

Therefore, a · b = ∑+∞
i=−1 aibi is well defined and we have an induced bifunctor

(−)·(−) : (ZNop
+ )fin × ZN+ → Z, (a, b) 7→ a · b

Similarly, we have a bifunctor

(−)·(−) : ZNop
+ × (ZN+)fin → Z, (c, d) 7→ c · d.

Taking into account the transposition isomorphism (−)T : ZNop
+
∼=→ ZN+ , we have that

the composition induced by the identity on the first variable and the transposition on the
second variable induces the scalar (or inner) product:

〈−,−〉 : (ZNop
+ )fin × (ZNop

+ )fin → Z.

Namely, if a = (a−1, a0, a1, · · · an, 0 · · · ) and b = (b−1, b0, b1, · · · bm, 0 · · · ), then

〈a, b〉 = a · bT =
min{n,m}

∑
i=−1

aibi.

It is easy to check that one has the following canonical extended bifunctors of the
dot-product:

(−) · (−) : (ZNop
+ )fin × (ZNop

+ )N+ → ZNop
+ , (a, B)→ a · B,

(−) · (−) : ZNop
+ × ((ZN+)fin)

Nop
+ → ZNop

+ , (a, B)→ a · B,

(−) · (−) : (ZNop
+ )N+ × (ZN+)fin → ZN+ , (A, b)→ A · b,

(−) · (−) : ((ZNop
+ )fin)

N+ × ZN+ → ZN+ , (A, b)→ A · b,

(a · B)j = ∑
k∈N+

akBk,j, (A · b)i = ∑
k∈N+

Ai,kbk.

(−) · (−) : ((ZNop
+ )fin)

N+ × (ZN+)N
op
+ →

(
ZN+

)Nop
+

, (A, B)→ A · B,

(−) · (−) : (ZNop
+ )N+ ×

(
(ZN+)fin

)Nop
+ → (ZNop

+ )N+ , (A, B)→ A · B,
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(A · B)i,j = ∑
k∈N+

Ai,kBk,j.

4.3. Join of Numerical Augmented Sequences: Cone and Suspension

We note that ZNop
+ has the structure of a ring (ZNop

+ ,+,×), which is induced by the ring
structure of (Z,+,×) by pointwise operation. That is, for all a, b ∈ ZNop

+ , their sum and
product are given as

(a + b)i = ai + bi, (a× b)i = ai × bi, i ∈ N+.

For a, b ∈ Z, we will also use the notation a× b = ab.
However, we may consider a new symmetric monoidal structure on ZNop

+ . This is
given by the join product:

Definition 11. The join product of a, b ∈ ZNop
+ , denoted as a� b, is given by the following formula:

(a� b)m := ∑
p+q=m−1

apbq, p, q ∈ N+.

In this case, the unit object is given as 1−1 where (1−1)i = δ−1,i is the Kronecker delta.
In this work, for k ∈ N+, 1k will denote the augmented sequence given by (1k)i = δk,i.

Proposition 5. The category ZNop
+ equipped with the join product� and the unit object 1−1 has the

structure of a strict symmetric monoidal category. Moreover, the induced functor y : (N+,t, [−1])
→ (ZNop

+ ,�, 1−1) is (2, 0)-monoidal.

Remark 16. It is an obvious fact that ((ZNop
+ )fin,�, 1−1) is a monoidal subcategory of (ZNop

+ ,�,

1−1). If a, b ∈ (ZNop
+ )fin, then, by our definition of dimension, one has:

dim(a� b) = (dim(a) + 1) + (dim(b) + 1)− 1 = dim(a) + dim(b) + 1.

If a, b ∈ ZNop
+ are fixed, then we easily obtain functors

a� (−), (−)� b : ZNop
+ → ZNop

+

given by c 7→ a� c and c 7→ c� b, respectively.
Now, for each k ∈ Z, we define an operator in the category ZNop

+ (actually, a functor)

Dk : ZNop
+ → ZNop

+ , c→ Dk(c)

as follows: given c ∈ ZNop
+ and i ∈ N+,

If k ≥ 0, then (Dk(c))i = ci+k,
If k ≤ 0, then:

(Dk(c))i =

{
ci+k, if i + k ≥ −1,
0, if i + k < −1.
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Definition 12. For a given b ∈ ZNop
+ , we define R(b) ∈

(
(ZN+)fin

)Nop
+ , the shifting of b, by the

formula (R(b))i = D−(i+1)(b), for all i ∈ N+. We may also see it as the matrix

R(b) =


D0(b)

D−1(b)
D−2(b)

...


This construction naturally gives rise to a functor

R : ZNop
+ →

(
(ZN+)fin

)Nop
+

which satisfies, in a natural way, the commutativity given in the next result.

Proposition 6. The diagram

ZNop
+ × ZNop

+

(−)�(−) $$

id×R // ZNop
+ ×

(
(ZN+)fin

)Nop
+

(−)·(−)
ww

ZNop
+

is commutative. In other words, given a, b ∈ ZNop
+ , we have the equalities

a� b = a · R(b) = b · R(a).

Now, we present an interesting construction: the cone of a sequence.

Definition 13. We define the cone of c ∈ ZNop
+ as the sequence con(c) ∈ ZNop

+ defined as con(c) :=
c + D−1(c). That is to say,

con(c)i =

{
ci + ci−1, if i ≥ 0
c−1, if i = −1.

Manifestly, we obtain the cone functor con : ZNop
+ → ZNop

+ . Taking into account the
results above, the next consequence is straightforward to check.

Proposition 7. Consider c = con(1−1) = 1−1 + 10 ∈ ZNop
+ . Then, the cone functor is related to

the join and the dot product through the following formula:

con(b) = c� b = b� c = b · R(c).

Remark 17. Iterating the cone functor and bearing in mind the identity con(b) = b · R(c), which
is given in the result above, we obtain that conk(b) = b · (R(c))k (k ≥ 0). This way, conk(b) is
completely determined by the sequence of matrices (R(c))0 = id, (R(c))1 = R(c), (R(c))2, . . .

R(c) =


1 1 0 0 0 · · ·
0 1 1 0 0 · · ·
0 0 1 1 0 · · ·
...

...
...

...
...

. . .

, (R(c))2 =


1 2 1 0 0 · · ·
0 1 2 1 0 · · ·
0 0 1 2 1 · · ·
...

...
...

...
...

. . .

, . . .
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It is also simple to check that the cone functor has an inverse functor

con−1 : ZNop
+ → ZNop

+ , con−1(b) = b · R(c)−1,

where

R(c)−1 =



1 −1 1 −1 1 −1 1 · · ·
0 1 −1 1 −1 1 −1 · · ·
0 0 1 −1 1 −1 1 · · ·
0 0 0 1 −1 1 −1 · · ·
0 0 0 0 1 −1 1 · · ·
0 0 0 0 0 1 −1 · · ·
0 0 0 0 0 0 1 · · ·
...

...
...

...
...

...
...

. . .


is the inverse of R(c).

Consequently, the inverse of the cone functor may be expressed by the equation

(con−1(b))k =
k

∑
i=−1

(−1)k−ibi

where b ∈ ZNop
+ and k ∈ N+.

Next, we define the Euler q-characteristic of any c ∈ (ZNop
+ )fin.

Definition 14. Consider a sequence c ∈ (ZNop
+ )fin and a rational number q ∈ Q. Then, if c 6= 0,

the Euler q-characteristic of c is the rational number defined as

Eq(c) =
dim(c)

∑
i=−1

(−q)ici.

When c = 0, we take Eq(c) = 0.

Remark 18. If c 6= 0 and q = −1, then we obtain sum(c), the sum of all elements of c :

E−1(c) =
dim(c)

∑
i=−1

ci = sum(c).

When q = 1, we have the Euler characteristic:

E1(c) =
dim(c)

∑
i=−1

(−1)ici = E(c),

and, for q = 1
2 , we obtain

E 1
2
(c) =

dim(c)

∑
i=−1

(−1)i

2i ci.

Remark 19. We have that E1(con(c)) = 0 for c ∈ (ZNop
+ )fin. Now, if (ZNop

+ )fin,1 denotes the full

subcategory of (ZNop
+ )fin consisting of those sequences c ∈ (ZNop

+ )fin with Euler characteristics equal

to zero, then the (restricted) cone functor con : (ZNop
+ )fin → (ZNop

+ )fin,1 is an isomorphism. Its
inverse functor

con−1 : (ZNop
+ )fin,1 → (ZNop

+ )fin
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can be given for b 6= 0 by the expressions (see the formula above for the inverse (con−1(b))k)

(con−1(b))k =
dim(b)−1

∑
i=k

(−1)i−kbi+1 =
k

∑
i=−1

(−1)i+kbi

since E1(b) = 0.
Note that a finite augmented sequence not satisfying the Euler characteristic condition is the

cone of an infinite-dimensional augmented sequence. For instance,

con((1,−1, 1,−1, 1,−1, · · · )) = (1, 0, 0, 0, · · · )

where the first sequence contains negative integers.

We are also interested in the suspension of a sequence.

Definition 15. The suspension of a sequence c ∈ ZNop
+ c is the sequence sus(c) ∈ ZNop

+ defined
as sus(c) := c + 2D−1(c). In other words,

(sus(c))i =

{
ci + 2ci−1, if i ≥ 0
c−1, if i = −1.

There is an obvious induced suspension functor sus : ZNop
+ → ZNop

+ , which is straightfor-
wardly related to the join and the dot product.

Proposition 8. Consider s = sus(1−1) = 1−1 + 20 ∈ ZNop
+ . Then, the suspension functor

sus : ZNop
+ → ZNop

+ is related to the join and the dot product through the formula

sus(b) = s� b = b� s = b · R(s).

Remark 20. Taking the iteration of the suspension functor and the relation given in the result above,
we obtain that susk(b) = b · (R(s))k (k ≥ 0). That is, as in the case of the cone, the iteration of the
suspension is completely determined by the sequence of matrices (R(s))0 = id, (R(s))1 = R(s),
(R(s))2, . . .

R(s) =


1 2 0 0 0 · · ·
0 1 2 0 0 · · ·
0 0 1 2 0 · · ·
...

...
...

...
...

. . .

, (R(s))2 =


1 4 4 0 0 · · ·
0 1 4 4 0 · · ·
0 0 1 4 4 · · ·
...

...
...

...
...

. . .

, · · ·

The suspension functor has an inverse functor

sus−1 : ZNop
+ → ZNop

+ , sus−1(b) = b · (R(s))−1,

where

(R(s))−1 =



1 −2 4 −8 16 −32 64 · · ·
0 1 −2 4 −8 16 −32 · · ·
0 0 1 −2 4 −8 16 · · ·
0 0 0 1 −2 4 −8 · · ·
0 0 0 0 1 −2 4 · · ·
0 0 0 0 0 1 −2 · · ·
0 0 0 0 0 0 1 · · ·
...

...
...

...
...

...
. . .


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Hence, one has

(sus−1(b))k =
k

∑
i=−1

(−2)k−ibi

for any b ∈ ZNop
+ and k ∈ N+.

Remark 21. We want to mention that E 1
2
(sus(c)) = 0 for any c ∈ (ZNop

+ )fin. Consider (ZNop
+ )fin, 1

2

the full subcategory of (ZNop
+ )fin consisting of those sequences having a Euler 1

2 -characteristic equal

to zero. Then, the (restricted) suspension functor sus : (ZNop
+ )fin → (ZNop

+ )fin, 1
2

is an isomorphism.

Taking into account that E 1
2
(b) = 0, for b ∈ (ZNop

+ )fin, 1
2
, the functor

sus−1 : (ZNop
+ )fin, 1

2
→ (ZNop

+ )fin

can also be expressed as

(sus−1(b))k = ∑k
i=−1(−2)k−ibi = ∑

dim(b)−1
i=k (−1)i−k( 1

2 )
i−k+1bi+1

= ∑
dim(b)−1
i=k (−1)i+k2k−i−1bi+1

for b 6= 0.
Like the case of the cone functor, a finite augmented sequence not satisfying a Euler 1

2 -characteristic
condition is the suspension of an infinite-dimensional augmented sequence. For instance,

sus((1, 1, 1,−2, 4,−8, 16, · · · , (−2)n−2, · · · , )) = (1, 3, 3, 0, · · · )

where the first sequence contains negative integers.

4.4. Actions of Augmented Matrices on Augmented Sequences of Integers

To finish this section, we consider actions of sequences and matrices. We first establish
the augmented binomial matrix bin ∈ ((ZNop

+ )fin)
N+ defined as

bini,j =

(
i + 1
j + 1

)
, i, j ∈ N+

and its inverse matrix bin−1 ∈ ((ZNop
+ )fin)

N+ given as

bin−1
i,j = (−1)i−j

(
i + 1
j + 1

)
, i, j ∈ N+.

Definition 16. Given a sequence a ∈ (ZNop
+ )fin and a matrix B ∈ (ZNop

+ )N+ , the action of B on a
is defined by the formula

a.̃B := (a · bin−1) · B.

The resulting sequence a.̃B is also said to be the tilde-triangle product of a and B. This
construction gives rise to an action functor

(−).̃(−) : (ZNop
+ )fin × (ZNop

+ )N+ → ZNop
+ .

We point out that we also have the identity a.̃bin = (a · bin−1) · bin = a.
Let N+|{−1,0} denote the full subcategory of the discrete category N+ whose objects

are −1 and 0. Then, it is plain to check that, up to isomorphism, N+ together with the
coproduct

p t q := p + q + 1,

is isomorphic to the free monoidal category over N+|{−1,0}.
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If C is any category, then, in order to consider a functor F : N+|{−1,0} → C, it is only
needed to give two objects X−1, X0 in C. Moreover, if C = (C,⊗, I) is monoidal, one
can consider the particular case X−1

∼= I. The following result is a direct consequence of
Proposition 1.

Corollary 7. Let C = (C,⊗, I) be a monoidal category and X ∈ C. Then, there exists a (2, 0)-
monoidal functor extending F : N+|{−1,0} → C, F(−1) = I, F(0) = X:

N+|{−1,0}� _
in
��

F // C

N+

ext(F)

;;

which is given by ext(F)(n) = ⊗n
0 X, for n ≥ 0, and ext(F)(−1) = I. Moreover, ext(F) : (N+,t,

−1)→ (C,⊗, I) is, up to isomorphism, the unique (2, 0)-monoidal extension of F.

Specializing C = (C,⊗, I) = (ZNop
+ ,�, 1−1) and b ∈ ZNop

+ , we obtain the notion of
augmented matrix extension of b:

Definition 17. Consider the functor F : N+|{−1,0} → ZNop
+ , F(−1) = 1−1 F(0) = b. The

(2, 0)-monoidal extension ext(F) : (N+,t,−1) → (ZNop
+ ,�, 1−1) is said to be the augmented

matrix extension of b, and it is denoted as

�b = ext(F) ∈ (ZNop
+ )N+ .

Finally, the notion of augmented matrix extension will raise the one of the trian-
gle product:

Definition 18. Given sequences a ∈ (ZNop
+ )fin and b ∈ ZNop

+ ,

a.b := a.̃(�b)

is said to be the triangle product of a and b.

Note that a.b = a.̃(�b) = (a · bin−1) · (�b) ∈ ZNop
+ .

5. Comparing Monoidal Categories Arising from Γ
op
+ -Sets and Numerical Sequences

Now, we are ready to compare the category of augmented semi-simplicial finite
sets and the category of augmented integer sequences. The key point is the sequential
cardinal functor which applies every finite augmented semi-simplicial set to the sequence
constituted by the cardinal of the set of n-simplices. This sequential cardinal functor
preserves the corresponding monoidal structures. Moreover, as we will see, it preserves
certain categorical semi-ring structures.
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5.1. The Monoidal Categories ((Setsfin)
Γop
+ ,t, Γ∅

+) and (ZNop
+ ,+, 0) as Well as

((Setsfin)
Γop
+ ,×, Γ1

+) and (ZNop
+ ,×, 1)

Recall that Setsfin is the category of finite sets and maps between them. Given any
functor X : Γ

op
+ → Setsfin, we may consider the diagram

Nop
+

in
��

Z

Γ
op
+ X

// Setsfin

|−|

OO

where in denotes the inclusion functor and | − | denotes the functor giving the cardinal of
any finite set.

Definition 19. The sequential cardinal of a Γ
op
+ - finite set, X ∈ (Setsfin)

Γ
op
+ , is defined as the

augmented sequence:
|X| : Nop

+ → Z

given by the composite |X| := | − | ◦ X ◦ in. To put it another way,

|X|n := |Xn|, n ∈ N+.

We observe that there is an induced functor | − | : (Setsfin)
Γ

op
+ → ZNop

+ where, for
morphisms f : X → Y, is defined as | f | := |Y| − |X|; that is, | f |n = |Y|n − |X|n, n ∈ N+.

On the one hand, in Section 3.2, we have seen that ((Setsfin)
Γ

op
+ ,t, Γ∅

+) and ((Setsfin)
Γ

op
+ ,

×, Γ1
+) are monoidal categories. On the other hand, in Section 4.3, we have seen that the

ring structure (Z,+,×) induces the ring structure (ZNop
+ ,+,×) and the monoidal structures

(ZNop
+ ,+, 0), (ZNop

+ ,×, 1).

Proposition 9. The functor | − | : (Setsfin)
Γ

op
+ → ZNop

+ preserves the monoidal structures induced
by coproducts and products:

| − | : ((Setsfin)
Γ

op
+ ,t, Γ∅

+)→ (ZNop
+ ,+, 0)

| − | : ((Setsfin)
Γ

op
+ ,×, Γ1

+)→ (ZNop
+ ,×, 1).

Proof. It is straightforward to check the identities:

|X tY| = |X|+ |Y|, |X×Y| = |X|×|Y|

|Γ∅
+| = 0, |Γ1

+| = 1

which are left to the reader.

Definition 20. Associated with the Γ
op
+ -sets, Γ+[n] and S+[n− 1] = Γ+[n] \ {ιn}, where ιn is

the identity of [n] ∈ Γ+, we consider the sequential cardinals:

γ+[n] = |Γ+[n]|, s+[n− 1] = |S+[n− 1]|.

We note that γ+[0] = c and s+[0] = s
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Remark 22. For every n ∈ N+, the sequential cardinal γ+[n] applied to Γ+[n] is given by the
binomial coefficients:

|Γ+[n]| = (|Γ+[n]−1|, |Γ+[n]0|, |Γ[n]1|, · · · , |Γ+[[n]n|, |∅|, |∅|, · · · )
=

(
(n+1

0 ), (n+1
1 ), (n+1

2 ), · · · , (n+1
n+1), 0, 0, · · ·

)
.

5.2. The Monoidal Categories ((Setsfin)
Γ

op
+ ,�, Γ+[−1]) and (ZNop

+ ,�, 1−1)

In this subsection, we consider ((Setsfin)
Γ

op
+ ,�, Γ+[−1]), which is a monoidal subcat-

egory of ((Sets)Γ
op
+ ,�, Γ+[−1]). The sequential cardinal functor preserves the monoidal

structure:

Theorem 4. The sequential cardinal functor

| · | : ((Setsfin)
Γ

op
+ ,�, Γ+[−1])→ (ZNop

+ ,�, 1−1)

is (2, 0)-monoidal, that is, the following holds true:

|X�Y| = |X|� |Y|, |Γ+[−1]| = 1−1

for all X, Y ∈ (Setsfin)
Γ

op
+ .

Proof. From the join definition, we have that

(X�Y)m = tp+q=m−1Xp ×Yq,

where −1 ≤ p and −1 ≤ q. Therefore, the equality |X�Y| = |X|� |Y| follows taking into
account Definition 11. Namely:

|X�Y|m = |(X�Y)m| = | tp+q=m−1 Xp ×Yq|
= ∑p+q=m−1 |Xp ×Yq|
= ∑p+q=m−1 |X|p × |Y|q
= (|X|� |Y|)m.

The cone functors, for semi-simplicial sets and for augmented sequences, are related
through the sequential cardinal functor:

Proposition 10. The following diagrams are commutative:

(Setsfin)
Γ

op
+

|·|
��

Conl // (Setsfin)
Γ

op
+

|·|
��

(Setsfin)
Γ

op
+

|·|
��

Conr // (Setsfin)
Γ

op
+

|·|
��

ZNop
+

con
// ZNop

+ ZNop
+

con
// ZNop

+

Moreover, as γ+[0] = |Γ+[0]| = c, we have γ+[n] = |Γ+[n]| = �n+1c (the (n + 1)-fold
join of c with itself).

Proof. By the definition of a left-cone functor, we have that

|Conl(X)| = |Γ+[0]� X| = |Γ+[0]|� |X| = c� |X| = con(|X|).
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Here, we have used Theorem 4 and Proposition 7. The commutativity of the right
diagram is analogously verified. The rest of the proof is straightforwardly taking into
account the formula Γ+[n]� Γ+[m] ∼= Γ+[n + m + 1] and that |X�Y| = |X|� |Y|.

Definition 21. Consider a finite semi-simplicial set X ∈ (SetsΓ
op
+ )fin and a rational number

q ∈ Q. Then, the Euler q-characteristic of X is the rational number defined for X 6= ∅ as

Eq(X) =
dim(X)

∑
i=−1

(−q)i|X|i

and Eq(∅) = 0.

Corollary 8. If X ∈ (SetsΓ
op
+ )fin is, up to isomorphism, the (left or right) cone of some Y ∈

(SetsΓ
op
+ )fin, then E1(X) = 0 and for k ∈ N+ such that −1 ≤ k ≤ dim(X), ∑k

i=−1(−1)k−i

|X|i ≥ 0.

Proof. If X ∼= Conl(Y), then |X| = |Conl(Y)| = con(|Y|) and therefore E1(X) = E1(|X|) =
E1(con(|Y|)) = 0 (see Remark 19). Note also that |Y| = con−1(|X|) and |Y|k ≥ 0. By Re-
mark 17, |Y|k = (con−1(|X|))k = ∑k

i=−1(−1)k−i|X|i ≥ 0.

Note that the cardinal functor | · | : Setsfin → Z induces a canonical functor | · | :
((Setsfin)

Γ
op
+ )Γ+ → (ZNop

+ )N, Z → |Z|, where |Z| = | · | ◦ Z ◦ in is the composite

N+
in // Γ+

Z // (Setsfin)
Γ

op
+

|·| // ZNop
+ .

Definition 22. The augmented Pascal matrix is defined as the augmented co-sequence given by the
composite:

N+
in // Γ+

Y // (Setsfin)
Γ

op
+

|·| // ZNop
+ .

Note that | · | ◦ Y ◦ in = bin (given in Section 4.4).

Corollary 9. The functor
| · | : ((Setsfin)

Γ
op
+ )Γ+ → (ZNop

+ )N

carries the Yoneda augmented semi-cosimplicial set Y : Γ+ → SetsΓ
op
+ , matricially represented as

Y =

Γ+[−1]
Γ+[0]

...


to the augmented Pascal matrix, where each row is the cone of the previous one.

|Y| =

|Γ+[−1]|
|Γ+[0]|

...

 =

γ+[−1]
γ+[0]

...

 = bin
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Remark 23. Observe that iterating the cone construction to |Γ+[−1]| = 1−1 generates, in a
natural way, the well-known Pascal triangle:

−1 0 1 2 3 4 5 6 . . .
γ+[−1] = |Γ+[−1]| 1 0 0 0 0 0 0 0 . . . γ+[−1]
γ+[0] = |Γ+[0]| 1 1 0 0 0 0 0 0 . . . conγ+[−1]
γ+[1] = |Γ+[1]| 1 2 1 0 0 0 0 0 . . . con2γ+[−1]
γ+[2] = |Γ+[2]| 1 3 3 1 0 0 0 0 . . . con3γ+[−1]
γ+[3] = |Γ+[3]| 1 4 6 4 1 0 0 0 . . . con4γ+[−1]
γ+[4] = |Γ+[4]| 1 5 10 10 5 1 0 0 . . . con5γ+[−1]
γ+[5] = |Γ+[5]| 1 6 15 20 15 6 1 0 . . . con6γ+[−1]
γ+[6] = |Γ+[6]| 1 7 21 35 35 21 7 1 . . . con7γ+[−1]

...
...

...
...

...
...

...
...

...
. . .

...

The suspension functors for semi-simplicial sets and for augmented sequences of
integers are related as follows:

Proposition 11. The following diagrams are commutative:

(Setsfin)
Γ

op
+

|·|
��

Susl // (Setsfin)
Γ

op
+

|·|
��

(Setsfin)
Γ

op
+

|·|
��

Susr // ((Setsfin)
Γ

op
+

|·|
��

ZNop
+

sus // ZNop
+ ZNop

+
sus // ZNop

+

Moreover, |S+[0]| = s = s+[0].

Below we have obtained, coming from S0 = S+[0], the iteration of the suspension
construction:

−1 0 1 2 3 4 5 · · ·
|S0| 1 2 0 0 0 0 0 · · · s
|Susl(S0)| 1 4 4 0 0 0 0 · · · sus(s)
|Sus2

l (S
0)| 1 6 12 8 0 0 0 · · · sus2(s)

|Sus3
l (S

0)| 1 8 24 32 16 0 0 · · · sus3(s)
|Sus4

l (S
0)| 1 10 40 80 80 32 0 · · · sus4(s)

|Sus5
l (S

0)| 1 12 60 160 240 192 64 · · · sus5(s)
...

...
...

...
...

...
...

...
. . .

...

For each n ∈ N+, we may consider an operator ann : ZNop
+ → ZNop

+ , defined as

(ann(c))i = (1− δn,i)ci.

Note that s+[n] = ann+1(γ+[n + 1]). Therefore, one has:

−1 0 1 2 3 4 5 · · ·
s+[−1] = |S+[−1]| 1 0 0 0 0 0 0 · · · an0γ+[0]
s+[0] = |S+[0]| 1 2 0 0 0 0 0 · · · an1γ+[1]
s+[1] = |S+[1]| 1 3 3 0 0 0 0 · · · an2γ+[2]
s+[2] = |S+[2]| 1 4 6 4 0 0 0 · · · an3γ+[3]
s+[3] = |S+[3]| 1 5 10 10 5 0 0 · · · an4γ+[4]
s+[4] = |S+[4]| 1 6 15 20 15 6 0 · · · an5γ+[5]

...
...

...
...

...
...

...
...

. . .
...
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which is obtained by removing the first row and the principal diagonal in the augmented
Pascal matrix.

For the suspension functor, the analogous of Corollary 8 is the following result:

Corollary 10. Let X be a finite semi-simplicial set (X ∈ (SetsΓ
op
+ )fin). If X is the suspension

of some Y ∈ (SetsΓ
op
+ )fin, then E 1

2
(X) = 0 and for k ∈ N+ such that −1 ≤ k ≤ dim(X),

∑k
i=−1(−2)k−i|X|i ≥ 0.

5.3. The Categorical Semi-Rings (SetsΓ
op
+ ,t,�, Γ∅

+, Γ+[−1]) and (ZNop
+ ,+,�, 0, 1−1)

As we have earlier commented, in this paper, by a categorical semi-ring, we will mean a
symmetric bimonoidal category. This is just a category C equipped with two symmetric
monoidal category structures:

• (C,⊕, 0, ) the additive structure
• (C,⊗, I) the multiplicative structure

together with

(i) natural isomorphisms 0⊗ A
∼=−→ 0

∼=←− A⊗ 0, which are called left multiplicative zero
and right multiplicative zero, respectively.

(ii) natural monomorphisms

A⊗ (B⊕ C) −→ (A⊗ B)⊕ (A⊗ C)

(A⊕ B)⊗ C −→ (A⊗ C)⊕ (B⊗ C)

called the left distributivity morphism and the right distributivity morphism, respectively.

This structure must satisfy Laplaza’s axioms (see Definition 2.1.1 in [27] and [19,28]).
A functor F : C → C′ between categorical semi-rings (or symmetric bimonoidal

categories) is said to be a functor of categorical semi-rings if it is a symmetric bimonoidal
functor, that is,

• F is a symmetric (2, 0)-monoidal functor (recall from Definition 4) from the additive
structure of C to the additive structure of C′.

• F is a symmetric (2, 0)-monoidal functor from the multiplicative structure of C to the
multiplicative structure of C′.

These are required to make the following two diagrams in C′ commutative for all
objects A, B, C:

Multiplicative zero:

F(A)⊗ 0 //

��

F(A)⊗ F(0)

��
0

$$

F(A⊗ 0)

yy
F(0)
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Distributivity:

(F(A)⊕ F(B))⊗ F(C) //

��

(F(A)⊗ F(C))⊕ (F(B)⊗ F(C))

��
F(A⊕ B)⊗ F(C)

��

F(A⊗ C)⊕ F(B⊗ C)

��
F((A⊕ B)⊗ C) // F((A⊗ C)⊕ (B⊗ C))

The next result gives a functor of categorical semi-rings:

Proposition 12. The sequential cardinal functor

| · | : ((Setsfin)
Γ

op
+ ,t,�, Γ∅

+, Γ+[−1])→ (ZNop
+ ,+,�, 0, 1−1)

is a functor of categorical semi-rings such that the following diagram is commutative

Γ+� _

Y
��

γ+ // ZNop
+

SetsΓ
op
+

(−)B̃γ+

;;

Proof. Consider the monoidal category (ZNop
+ ,�, 1−1). The finite sequences 1−1 = γ+[−1] =

|Γ+[−1]|, 1−1 + 10 = γ+[0] = |Γ+[0]| determine a unique morphism, γ+[−1] → γ+[0], in
ZNop

+ . Applying Proposition 1, we obtain a (symmetric) (2, 0)-monoidal functor (Γ+,t, [−1])→
(ZNop

+ ,�, 1−1) given, up to isomorphism, by [n] 7→ γ+[n]

Γ+|[−1],[0]� _

in
��

// ZNop
+

Γ+

γ+

::

Taking into account Remark 5, one has a commutative diagram

Γ+� _

Y
��

γ+ // ZNop
+

SetsΓ
op
+

(−)B̃γ+

;;

where (−)B̃γ+ : ((Setsfin)
Γ

op
+ ,�, Γ+[−1])→ (ZNop

+ ,�, 1−1) is a (2, 0)-monoidal functor.
Since, by Theorem 4, we also have the (symmetric) (2, 0)-monoidal functor

| · | : ((Setsfin)
Γ

op
+ ,�, Γ+[−1])→ (ZNop

+ ,�, 1−1)

such that |Y([n])| = γ+(n), it follows that (−)B̃γ+ = | · |. As it preserves coproducts it is,
actually, a functor of categorical semi-rings:

| · | : ((Setsfin)
Γ

op
+ ,t,�, Γ∅

+, Γ+[−1])→ (ZNop
+ ,+,�, 0, 1−1)

We leave the rest of the proof to the reader.
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5.4. Comparing Actions and Triangle Products

To finish this section, we establish an important result asserting that, under mild
restrictions, the sequential cardinal functor carries the action to the triangle product. We
need a previous definition.

Definition 23. A functor Z : Γ+ → SetsΓ
op
+ is said to be regular if Z(ϕ) is injective (on each

dimension) for every morphism ϕ in Γ+. We shall denote as (SetsΓ
op
+ )Γ+

reg the full subcategory of

(SetsΓ
op
+ )Γ+ consisting of regular functors.

Theorem 5. The following diagram is commutative:

(Setsfin)
Γ

op
+ × ((Setsfin)

Γ
op
+ )Γ+

reg

|−|×|−|
��

(−)B̃(−) // (Setsfin)
Γ

op
+

|−|
��

ZNop
+ × (ZNop

+ )N+

(−).̃(−)
// ZNop

+

In other words, if X ∈ (Setsfin)
Γ

op
+ and Z ∈ ((Setsfin)

Γ
op
+ )reg, then

|XB̃Z| = |X|.̃|Z|.

Moreover, if we specialize Z := Γ+[−], then |XB̃Γ+[−]| = |X|.̃|Γ+[−]| = |X|.

Proof. If Z : Γ+ → SetsΓ
op
+ is regular, then we consider

Z̆([−1]) := Z([−1])
Z̆([p]) := Z([p]) \ (∪p

i=0(ϕi)∗(Z([p− 1])), p ≥ 0

From this construction, one can easily check that

|Z([p])| =
p

∑
k=−1

(
p + 1
k + 1

)
|Z̆([k])|,

where |Z([p])|, |Z̆([k])| ∈ ZNop
+ . Therefore, we have the following product of matrices:

|Z| = bin · |Z̆|.

Finally, from the definition of XB̃Z, we obtain

|XB̃Z| = |X| · |Z̆| = |X| · (bin−1 · |Z|) = |X|.̃|Z|.

6. Example: Functors and Triangle-Products Induced by the Dunce Cap

To finish our study, we provide a striking result coming from the example of the
dunce cap.

6.1. Augmented Triangular Numbers

Definition 24. Let d ≥ 0 be an integer. For n ≥ 1, we consider Td
n , the n-th triangular number of

dimension d, inductively defined as

T0
n = 1, Td

n =
n

∑
i=1

Td−1
i , d ≥ 1.
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We refer the reader to Theorem 1.3 in [13] for a proof of the following result (d ≥ 1,
n ≥ 1):

Td
n =

1
d!

n(n + 1) · · · (n + d− 1).

We complete the matrix of triangular numbers for dimension −1 to obtain the aug-
mented matrix tri ∈ (ZNop

+ )N+ of triangular numbers trii,j, i, j ∈ N+

trii,j =

{
δ−1,j, if i = −1
Ti

j+2, if i ≥ 0.

Note that, for i ≥ 1, j ≥ −1, one has that trii,j = Ti
j+2 = (j+2)(j+3)···(j+1+i)

i! = (j+1+i
i ) =

bini+j,i−1. Then, it is easy to check that, for i, j ∈ N+, i ≥ 0, we also have:

trii,j = bini+j,i−1.

We give some values of the matrix tri:

triij −1 0 1 2 3 4 5 6 6 8 · · ·
−1 1 0 0 0 0 0 0 0 0 0 · · ·
0 1 1 1 1 1 1 1 1 1 1 · · ·
1 1 2 3 4 5 6 7 8 9 10 · · ·
2 1 3 6 10 15 21 28 36 45 55 · · ·
3 1 4 10 20 35 56 84 120 165 220 · · ·
4 1 5 15 35 70 126 210 330 495 715 · · ·
5 1 6 21 56 126 252 462 792 1287 2002 · · ·
6 1 7 28 84 210 462 924 1716 3003 5005 · · ·
7 1 8 36 120 330 792 1716 3432 6435 11400 · · ·
8 1 9 45 165 495 1287 3003 6435 12870 14400 · · ·
...

...
...

...
...

...
...

...
...

...
...

. . .

6.2. Triangular Numbers and Co-Semi-Simplicial Object Induced by the Dunce Cap

Associated with the dunce cap Γ1
+, which is the final object in the category SetsΓ

op
+ , we

can consider the unique augmented semi-simplicial map

f : Γ+[−1]→ Γ1
+.

Corollary 11. Let Γ̃1
+ : Γ+|[−1],[0] → SetsΓ

op
+ the functor induced by the map f : Γ+[−1]→ Γ1

+.
Then, there exists an extension

Γ+|[−1],[0]� _

in
��

Γ̃1
+ // SetsΓ

op
+

Γ+

�Γ1
+

99

given as

(�Γ1
+)([−1]) = Γ+[−1], n = −1

(�Γ1
+)([n]) = �n

0 Γ1
+, n ≥ 0

(�Γ1
+)([−1]→ [0]) = f .

Moreover, �Γ1
+ : (Γ+,t, [−1])→ (SetsΓ

op
+ ,�, Γ+[−1]) is, up to isomorphism, the unique

(2, 0)-monoidal extension.
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Remark 24. If we consider (�Γ1
+)([n]) = �n

0 Γ1
+ ∈ (Setsfin)

Γ
op
+ , then we have that

|(�Γ1
+)([−1])| = (1, 0, 0, · · · ),

|(�Γ1
+)([0])| = (1, 1, 1, · · · ).

Observe that |(�Γ1
+)([0])|j = T0

j+2 for j ∈ N+,

|(�Γ1
+)([1])| = (1, 2, 3, 4, · · · ).

Then, we have that |(�Γ1
+)([1])|j = T1

j+2 for j ∈ N+. In general, for d ≥ 0, we have:

|(�Γ1
+)([d])|j = Td

j+2, j ∈ N+.

Therefore, for any i, j ∈ N+,

|(�Γ1
+)([i])|j = trii,j.

6.3. Functors of Categorical Semi-Rings Induced by the Dunce Cup

We can construct functors of categorical semi-rings using triangular products:

Corollary 12. The dunce cup Γ1
+ ∈ (Setsfin)

Γ
op
+ induces the functor of categorical semi-rings:

(−)BΓ1
+ : ((Setsfin)

Γ
op
+ ,t,�, Γ∅

+, Γ+[−1])→ ((Setsfin)
Γ

op
+ ,t,�, Γ∅

+, Γ+[−1])

such that, if X ∈ (Setsfin)
Γ

op
+

XBΓ1
+ = XB̃(�Γ1

+).

In particular, for every X, Y ∈ (Setsfin)
Γ

op
+ , we have the canonical isomorphism:

(X�Y)BΓ1
+
∼= (XBΓ1

+)� (YBΓ1
+).

Proof. This is just a consequence of Corollaries 6 and 11.

Remark 25. Observe that we can compute the sequential cardinal |XB(�Γ1
+)| by means of the

matricial product
|XB̃(�Γ1

+)| = |X| · bin−1 · tri

Corollary 13. The dunce cup Γ1
+ induces the functor of categorical semi-rings:

|(−)BΓ1
+| : ((Setsfin)

Γ
op
+ ,t,�, Γ∅

+, Γ+[−1])→ (ZNop
+ ,+,�, 0, 1−1),

X → |XBΓ1
+| = |XB̃(�Γ1

+)| = |X| · bin−1 · tri

Proof. It suffices to apply Corollary 12, Proposition 12 and Theorem 5.

Example 1. For the augmented semi-simplicial sets X = S+[1], Y = S+[2], we have the cardinal
augmented sequences |X| = (1, 3, 3, 0, · · · ) and |Y| = (1, 4, 6, 4, 0, · · · ). Using the formula
|X�Y| = |X|� |Y|, we obtain the sequence

|X�Y| = (1, 7, 21, 34, 30, 12, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 · · · )
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Now, using the formula |ZB̃(�Γ1
+)| = (|Z| · bin−1) · tri, one has the sequences

|XB̃(�Γ1
+)| = (1, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, · · · )

|YB̃(�Γ1
+)| = (1, 4, 10, 20, 34, 52, 74, 100, 130, 164, 202, 244, 290, 340, 394, · · · )

|(X�Y)B̃(�Γ1
+)| = (1, 7, 28, 83, 202, 427, 812, 1423, 2338, 3647, 5452, 7867, · · · )

On another note, one can check that computing the join of augmented sequences |XB̃(�Γ1
+)|,

|YB̃(�Γ1
+)|, we also have:

|XB̃(�Γ1
+)|� |YB̃(�Γ1

+)| = (1, 7, 28, 83, 202, 427, 812, 1423, 2338, 3647, 5452, 7867, · · · )

We point out that |YB̃(�Γ1
+)| = A005893, where A005893 is the notation used in the

encyclopedia of integer numbers (see [16,39]) to denote the number of points on the surface
of a tetrahedron. However, the integer sequence |(X � Y)B̃(�Γ1

+)| does not appear in
this encyclopedia.

7. Conclusions and Future Work

Our main conclusion is that there is a nice relationship between augmented semi-
simplicial finite sets and augmented sequences of integers. The categorical structure of
semi-simplicial sets can be enriched with operations induced by finite coproduts, finite
products, joins, and actions of some co-semi-simplicial objects and the space of augmented
sequences admits some ring structures, and augmented matrices of integers can be used to
transform augmented sequences. The sequential cardinal functor can be considered as an
algebraization of the geometric objects given by augmented semi-simplicial finite sets into
algebraic structures associated with augmented sequences.

In this paper, we have seen how the binomial numbers are connected with the Yoneda
embedding and the iteration of the join operation on the final object of the category of
semi-simplicial finite sets are connected with triangular numbers.

The authors have a project consisting of analyzing more properties of this algebraiza-
tion process; in particular, we can see how the subdivision and the cylinder construction for
semi-simplicial sets can be obtained by taking some actions of adequate co-semi-simplical
objects and how the sequential cardinal of a subdivision can be computed using chain-
power numbers and Stirling numbers (see [14,40]).

A different interesting objective will be to construct a categorical semi-ring (or sym-
metric bimonoidal category structure)

((Setsfin)
Γ

op
+ ,�,

⊙
, Γ+[−1], Γ+[0])

verifying the following properties:

If X, Y ∈ (Setsfin)
Γ

op
+ and dim(X), dim(Y) are finite, then

dim(X
⊙

Y) = (dim(X) + 1)(dim(Y) + 1)− 1.

If X, Y, Z ∈ (Setsfin)
Γ

op
+ , then

(X�Y)
⊙

Z ∼= (X
⊙

Z)� (Y
⊙

Z).
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