Rapid methods to select facultative pathogens on invader Cenchrus setaceus

  1. Sopena, Jorge 1
  2. Sierra Cornejo, Natalia 1
  3. Cosoveanu, Andreea 1
  4. Rodriguez, Carmen G. 1
  5. Cabrera, Raimundo 1
  1. 1 Universidad de La Laguna

    Universidad de La Laguna

    San Cristobal de La Laguna, España

    ROR https://ror.org/01r9z8p25

Romanian Journal for Plant Protection

ISSN: 2248-129X

Argitalpen urtea: 2021

Alea: 14

Orrialdeak: 127-140

Mota: Artikulua

DOI: 10.54574/RJPP.14.16 GOOGLE SCHOLAR lock_openSarbide irekia editor

Beste argitalpen batzuk: Romanian Journal for Plant Protection


Fountain grass, Cenchrus setaceus (Forssk.) Chiov. (syn. Pennisetum setaceum) is an invasive plantwith high impact on insular environments such as the Canary Islands. Although there are no mentions on C.setaceus phytopathogens, plant communities with symptoms of withering, yellowing and decay have been foundin Canary Islands. Our project aims to find autochthonous potential biological control agents for C. setaceus.Herein, we present a workflow in which we tested fast and cost-effective methods to screen a high number offungal strains, aiming features like fast colonizers as well as competitive saprophytes and facultative pathogenswith ability to cause infection. Affected plants were collected from the islands of Gran Canaria, Tenerife, LaGomera, La Palma and Lanzarote and 243 fungal strains belonging to 38 genera were isolated. First screening wasperformed on adult plants with pooled multiple species strains – spores suspensions of 10 random strains per pool,each strain representing a genus or a morphotype (n = 83). No symptoms of disease were observed. Most isolatedgenera in this study were Alternaria and Fusarium, known as cosmopolite phytopathogens. Next screeningmethods were focused accordingly. Two in vitro single-strain screening methods were employed by usingmycelium-inoculated sectioned and entire leaves, to observe the ability of tissue colonization. First screening onsectioned leaves was performed with high amount of inoculum, to increase the chances of colonization and todetermine the ability of fungi to use the plant material as substrate. The method was not effective in significantlyreducing the number of candidates as most strains had abundant growth. To detect differences in fungal strainsacting as facultative pathogens or phytopathogens, the 2nd single-strain screening was performed onphysiologically-stressed (pelargonic acid, a desiccant molecule to induce turgor loss) and not pre-treated leavesusing less inoculum. Six strains were selected and subsequently evaluated in the last in vivo screening in thepresence and absence of the desiccant. Finally, we detected strain 967 Fusarium clavum as able to colonize andreproduce at the crown of the young plants. In view of our experimental process, we propose a workflow for thecost-effective search for potential BCAs in similar situations.

Erreferentzia bibliografikoak

  • "ABDESSEMED, N., BAHET, Y. A., ZERMANE, N. (2020). Mycoherbicide potential of Alternaria alternata (Fries.) Kiessler and its formulations on the host weed Xanthium strumarium L. Biocontrol Science and Technology, 1-16. Doi: 10.1080/09583157.2020.1814692
  • ADKINS, E., CORDELL, S., DRAKE, D. (2011). Role of Fire in the Germination Ecology of Fountain Grass (Pennisetum setaceum), an Invasive African Bunchgrass in Hawai’i. Pacific Science, 65, 17-25. Doi: 10.2984/65.1.017
  • AULD, B. A., MORIN, L. (1995). Constraints in the Development of Bioherbicides. Weed Technology, 9, 3, 638-652. Doi: 10.1017/S0890037X00023964
  • BARBERI, P. (2019). Ecological weed management in Sub-Saharan Africa: Prospects and implications on other agroecosystem services. In: Donald L. Sparks (Ed), Advances in Agronomy, 156, 219-264. Academic Press. Doi: 10.1016/bs.agron.2019.01.009
  • BATES, D., MÄCHLER, M., BOLKER, B., WALKER, S. (2015). Fitting Linear Mixed-Effects Models Using Lme4. Journal of Statistical Software, 67, 1-48. Doi: 10.18637/Jss.V067.I01
  • BETANCORT, J.A.R., ARENCIBIA, M., GALLO, A. (1999). Consideraciones acerca del género Pennisetum en Canarias (Magnoliophyta, Poaceae). Vieraea: Folia Scientarum Biologicarum Canariensium, 27, 205-216.
  • CAUJAPÉ-CASTELLS, J., TYE, A., CRAWFORD, D.J., SANTOS-GUERRA, A., SAKAI, A., BEAVER, K., LOBIN, W., VINCENT FLORENS, F. B., MOURA, M., JARDIM, R. (2010). Conservation of oceanic island floras: Present and future global challenges. Perspectives in Plant Ecology, Evolution and Systematics, 12, 2, 107-129. Doi: 10.1016/j.ppees.2009.10.001
  • CIRIMINNA, R., FIDALGO, A., ILHARCO, L.M., PAGLIARO, M. (2019). Herbicides based on pelargonic acid: Herbicides of the bioeconomy. Biofuels, Bioproducts and Biorefining, 13, 6, 1476- 1482. Doi: 10.1002/bbb.2046
  • CLEWLEY, G.D., ESCHEN, R., SHAW, R.H., WRIGHT, D.J. (2012). The effectiveness of classical biological control of invasive plants. Journal of Applied Ecology, 49, 6, 1287-1295. Doi: 10.1111/j.1365-2664.2012.02209.x
  • COOK, J.C., CHARUDATTAN, R., ZIMMERMAN, T.W., ROSSKOPF, E.N., STALL, W.M., MACDONALD, G.E. (2009). Effects of Alternaria destruens, glyphosate, and ammonium sulfate individually and integrated for control of dodder (Cuscuta pentagona). Weed Technology, 23, 550-555. Doi: 10.1614/wt-08-019.1
  • COSOVEANU, A., RODRIGUEZ SABINA, S., CABRERA, R. (2018). Fungi as Endophytes in Artemisia thuscula: Juxtaposed Elements of Diversity and Phylogeny. Journal of Fungi, 4, 1, 17. Doi: 10.3390/jof4010017
  • CULLINEY, T.W. (2005). Benefits of Classical Biological Control for Managing Invasive Plants. Critical Reviews in Plant Sciences, 24, 2, 131-150. Doi: 10.1080/07352680590961649
  • DAYAN, F.E., CANTRELL, C.L., DUKE, S.O. (2009). Natural products in crop protection. Bioorganic Medicinal Chemistry, 17, 12, 4022-4034. Doi: 10.1016/j.bmc.2009.01.046
  • DORDAS, C. (2008). Role of nutrients in controlling plant diseases in sustainable agriculture. A review. Agronomy for Sustainable Development, 28, 1, 33-46. Doi: 10.1051/agro:2007051
  • FUKUDA, M., TSUJINO, Y., FUJIMORI, T., WAKABAYASHI, K., BÖGER, P. (2004). Phytotoxic activity of middle-chain fatty acids I: Effects on cell constituents. Pesticide Biochemistry and Physiology, 80, 3, 143-150. Doi: 10.1016/j.pestbp.2004.06.011
  • GHOSHEH, H. Z. (2005). Constraints in implementing biological weed control: A review. Weed Biology and Management, 5, 3, 83-92. Doi: 10.1111/j.1445-6664.2005.00163.x
  • GONZÁLEZ-RODRÍGUEZ, A. M., BARUCH, Z., PALOMO, D., CRUZ-TRUJILLO, G., JIMÉNEZ, M. S., MORALES, D. (2010). Ecophysiology of the invader Pennisetum setaceum and three native grasses in the Canary Islands. Acta Oecologica, 36, 2, 248-254. Doi: 10.1016/j.actao.2010.01.004
  • HOAGLAND, R.E., BOYETTE, C.D., WEAVER, M.A., ABBAS, H.K. (2007). Bioherbicides: Research and Risks. Toxin Reviews, 26, 4, 313-342. Doi: 10.1080/15569540701603991
  • IACOMI-VASILESCU, B., AVENOT, H., BATAILLE-SIMONEAU, N., LAURENT, E., GUENARD, M., SIMONEAU, P. (2003). In vitro fungicide sensitivity of Alternaria species pathogenic to crucifers and identification of Alternaria brassicicola field isolates highly resistant to both dicarboximides and phenylpyrroles. Crop Protection, 23, 481-488. Doi: 10.1016/j.cropro.2003.10.003
  • JOHNSON, D.R., WYSE, D.L., JONES, K.J. (1996). Controlling Weeds with Phytopathogenic Bacteria. Weed Technology, 10, 3, 621-624. Doi: 10.1017/S0890037X00040549
  • KHAN, Z.R., JAMES, D.G., MIDEGA, C.A.O., PICKETT, J.A. (2008). Chemical ecology and conservation biological control. Biological Control, 45, 2, 210-224. Doi: 10.1016/j.biocontrol.2007.11.009
  • LI, Y., SUN, Z., ZHUANG, X., XU, L., CHEN, S., LI, M. (2003). Research progress on microbial herbicides. Crop Protection, 22, 2, 247-252. Doi: 10.1016/S0261-2194(02)00189-8
  • MCFADYEN, R.E.C. (1998). BIOLOGICAL CONTROL OF WEEDS. Annual Review of Entomology, 43, 1, 369-393. Doi: 10.1146/annurev.ento.43.1.369
  • MESSING, R.H., WRIGHT, M.G. (2006). Biological control of invasive species: Solution or pollution? Frontiers in Ecology and the Environment, 4, 3, 132-140. Doi: 10.1890/1540-9295(2006)004[0132: BCOISS]2.0.CO;2
  • PABLO FERRER-GALLEGO, P., BOISET, F. (2015). Lectotypification of the fountain grass Cenchrus setaceus (Poaceae: Paniceae). Phytotaxa, 218, 2, 171-176. Doi: 10.11646/phytotaxa.218.2.7
  • PACANOSKI, Z. (2015). Bioherbicides. In A. Price, J. Kelton, & L. Sarunaite (Eds.), Herbicides, Physiology of Action, and Safety, 253-274. Doi: 10.5772/61528
  • PESHIN, R., ZHANG, W. (2014). Integrated Pest Management and Pesticide Use. En Integrated Pest Management, 3. Doi: 10.1007/978-94-007-7796-5_1
  • POULIN, J., WELLER, S.G., SAKAI, A.K. (2005). Genetic diversity does not affect the invasiveness of fountain grass (Pennisetum setaceum) in Arizona, California and Hawaii. Diversity and Distributions, 11, 3, 241-247. Doi: 10.1111/j.1366-9516.2005.00136.x
  • RAHLAO, S.J., MILTON, S.J., ESLER, K.J., BARNARD, P. (2014). Performance of invasive alien fountain grass (Pennisetum setaceum) along a climatic gradient through three South African biomes. South African Journal of Botany, 91, 43-48. Doi: 10.1016/j.sajb.2013.11.013
  • REICHARD, S.E. (1997). Prevention of Invasive Plant Introductions on National and Local Levels. In J. O. Luken J. W. Thieret (Eds.), Assessment and Management of Plant Invasions, 215-227. Springer. Doi: 10.1007/978-1-4612-1926-2_16
  • RODRÍGUEZ-CABALLERO, G., FERNÁNDEZ-LÓPEZ, M., FERNÁNDEZ-GONZÁLEZ, A. J., ROLDÁN, A. (2017). Striking alterations in the soil bacterial community structure and functioning of the biological N cycle induced by Pennisetum setaceum invasion in a semiarid environment. Soil Biology and Biochemistry, 109, 176-187. Doi: 10.1016/j.soilbio.2017.02.012
  • SINDEN, J., HESTER, S., ODOM, KALISCH, SILLITOE, J., CACHO, O. (2004). The economic impact of weeds in Australia. En CRC for Australian Weed Management, 20.
  • TEBEEST, D.O. (1996). Biological Control of Weeds with Plant Pathogens and Microbial Pesticides11Published with the approval of the Director, Arkansas Agricultural Experiment Station, Manuscript No. 95053. En D. L. Sparks (Ed.), Advances in Agronomy, 56, 115-137. Academic Press.
  • Doi: 10.1016/S0065-2113(08)60180-7 THOMMA, B.P.H.J. (2003). Alternaria spp.: from general saprophyte to specific parasite. Molecular Plant Pathology, 4, 4, 225-236. Doi: 10.1046/J.1364-3703.2003.00173.X
  • THRANE, U. (1999). Fusarium. In: Carl A. Batt, Mary Lou Tortorello (Eds), Encyclopedia of Food Microbiology (2nd Edition), 76-81. Academic Press. Doi: 10.1016/B978-0-12-384730-0.00141-5.
  • TRONCOSO-ROJAS, R., TIZNADO-HERNANDEZ, M. (2014). Alternaria alternata (Black Rot, Black Spot). In: Silvia Bautista-Baños (Ed.), Postharvest Decay, 147-187. Academic Press. Doi: 10.1016/B978-0-12-411552-1.00005-3
  • VAN WILGEN, B.W., MORAN, V.C., HOFFMANN, J.H. (2013). Some Perspectives on the Risks and Benefits of Biological Control of Invasive Alien Plants in the Management of Natural Ecosystems. Environmental Management, 52, 3, 531-540. Doi: 10.1007/s00267-013-0099-4
  • WALENTOWITZ, A.J., IRL, S.D.H., ACEVEDO RODRÍGUEZ, A.J., PALOMARES-MARTÍNEZ, Á., VETTER, V., ZENNARO, B., MEDINA, F.M., BEIERKUHNLEIN, C. (2019). Graminoid Invasion in an Insular Endemism Hotspot and Its Protected Areas. Diversity, 11, 10, 192. Doi: 10.3390/d11100192
  • WHITE, T., BRUNS, T., LEE, S., TAYLOR, J., INNIS, M., GELFAND, D., SNINSKY, J. (1990). Amplification and Direct Sequencing of Fungal Ribosomal RNA Genes for Phylogenetics. En Pcr Protocols: A Guide to Methods and Applications, 31, 315-322.
  • WOUDENBERG, J.H.C., SEIDL, M.F., GROENEWALD, J.Z., DE VRIES, M., STIELOW, J.B., THOMMA, B.P.H.J., CROUS, P.W. (2015). Alternaria section Alternaria: Species, formae speciales or pathotypes? Studies in Mycology, 82, 1-21. Doi: 10.1016/j.simyco.2015.07.001"