Agregació i desagregació proteica en Escherichia coliBiologia dels cossos d'inclusió

  1. Carrió Llach, Mar
Dirigida por:
  1. Antonio Villaverde Corrales Director/a

Universidad de defensa: Universitat Autònoma de Barcelona

Fecha de defensa: 02 de diciembre de 2003

Tribunal:
  1. Ricardo Guerrero Lemus Presidente
  2. Pau Ferrer Secretario/a
  3. Ursula Rinas Vocal
  4. Virtudes Villegas Hernandez Vocal
  5. Pau Vila Vocal

Tipo: Tesis

Teseo: 97399 DIALNET lock_openTDX editor

Resumen

La majoria de les proteïnes dinterès biomèdic com hormones, enzims, factors de creixement o antígens sobtenen en proporcions molt petites de les seves fonts naturals i fa que la seva comercialització no sigui viable. Per això la producció de proteïnes heteròlogues en bacteris ha estat un gran avenç i actualment és un procés molt utilitzat per la indústria farmacològica, ja que és un procés ràpid i de baix cost. El bacteri Escherichia coli ha estat lorganisme productor més usat com a fàbrica cel·lular degut a lexhaustiu coneixement que se'n té, la seva fàcil i econòmica manipulació i la gran varietat de sistemes i vectors dexpressió que s'han dissenyat específicament per aquest. Un dels principals obstacles que ens trobem quan utilitzem E.coli com a organisme productor és la dificultat de plegar la proteïna correctament, el que implica la seva degradació o la seva agregació en forma de cossos dinclusió. La formació de cossos dinclusió és un dels majors problemes daquests processos i per això es té un gran interès en evitar que es formin i en buscar estratègies per a millorar lexpressió de la proteïna soluble. En aquest treball sha estudiat profundament els mecanismes involucrats en la formació dels cossos dinclusió amb lobjectiu de buscar solucions a la problemàtica que representa i d' entendre millor les bases moleculars que porten a lagregació de proteïnes. Per això, sha estudiat la naturalesa dels agregats des de diferents punts de vista, des de l'anàlisi del seu creixement dins del citoplasma dE. coli, l'estudi dels factors cel·lulars que hi estan implicats, com s'estructura la proteïna agregada a nivell molecular i com es pot recuperar la proteïna dels agregats en el seu estat natiu. Els resultats obtinguts ens han portat a proposar un model de construcció dels cossos d'inclusió, que ens demostra que l'agregació proteica és reversible i no irreversible com es creia prèviament. La formació dels cossos d'inclusió és el resultat d'un equilibri dinàmic entre l'agregació i la solubilització, que està desplaçat cap a l'agregació durant la sobreproducció d'una proteïna recombinant, però que és invertit quan aquesta s'atura. Per altra banda, també s'ha detectat que els agregats presenten plasticitat molecular, que es correspon amb un estat d'agregació reversible. El procés de formació i solubilització dels cossos d'inclusió és un mecanisme íntimament associat amb el sistema de control de qualitat proteic, on proteases i xaperones s'encarreguen d'assegurar el correcte estat conformacional de les noves cadenes polipeptídiques sintetitzades. Aquesta vinculació ens suggereix que l'agregació proteica pot representar un mecanisme de resposta a l'estrés desenvolupat per a reduir la toxicitat produïda per la presència d'estructures proteiques mal plegades en el citoplasma d'E. coli. Les xaperones DnaK i GroEL tenen un paper rellevant en la formació dels cossos d'inclusió. Mentre que DnaK evita la seva formació, sembla que GroEL indueix l'aglutinació dels petits preagregats que interaccionen per a formar un únic cos d'inclusió. La solubilització dels agregats in vivo és un procés multifactorial, en el que hi intervenen una gran part de les proteïnes de xoc tèrmic. En un àmbit més aplicat, hem estudiat possibles maneres de recuperar la proteïna acumulada en els cossos d'inclusió. Per una banda, hem desenvolupat un procediment que mimetitza la solubilització dels agregats que es dóna in vivo, basat en la incubació d'aquests amb extractes cel·lulars i per altra l'ús de la pressió hidrostàtica. Els dos casos ofereixen avantatges respecte els utilitzats fins ara, com que són més ecològics perquè s'evita l'ús d'agents químics, són més econòmics i fàcilment escalables i en el primer cas, és més genèric. Most of the proteins of relevant biomedical value are found at very low concentrations in their natural sources. Nowadays, the production of recombinant proteins in host cells has became a novel technology extensively used because it offers the possibility to obtain any protein at high concentrations. However, the production of recombinant proteins in host cells, especially Escherichia coli, often results in the formation of insoluble aggregates known as inclusion bodies (IBs). Since insoluble polypeptides are not useful for biotechnological purposes, the formation of inclusion bodies is regarded as an obstacle for the use of bacterial cell factories. For this, there is a big effort in improving the solubility of the protein produced and on finding a general strategy to recover purified active proteins from IBs. In this study, we analysed the mechanisms involved in the inclusion body formation in order to overcome the problems they cause and for a better understanding of the molecular basis that leads to protein aggregation. For this, we studied the nature of inclusion bodies from different points of view, such as analysing their growing in the E.coli cytoplasm, studying the cellular factors that participate in this process, the molecular organisation of the aggregated protein and the ways to recover native protein from IBs. Since current days, inclusion bodies were believed to be compact protein aggregates, that being unreachable by proteases and chaperones remain inert once produced in the cell. However, the investigations carried out during this project demonstrate that Ibs are more labile structures, formed during a dynamic process that involves protein precipitation but also solubilisation and proteolytic degradation. IB particles are then formed because of the equilibrium between these antagonic processes, that is displaced towards precipitation when the recombinant protein is produced at high rates. In agreement with this finding, we have detected that polypeptides embedded in Ibs present molecular plasticity. In addition, our observations prove that IB protein is accessible to chaperones and other components of the cell quality control system that control IB formation and solubilisation. This observation suggest that the IB construction and deconstruction is a process included in the stress response, which might be developed to reduce the toxicity produced by the presence of unfolded proteins in the cytoplasm of E. coli. We have seen that chaperones DnaK and GroEL have a relevant function in the IB formation. While DnaK has a preventive role in the protein aggregation, GroEL seems to induce the precipitation of the small preaggregates that interact to form a big inclusion body. On the other hand, we detected that different chaperones participate in the IB solubilisation process, in a co-ordinate way. In a more applicable area, we explored new strategies to recover native protein from IBs. The first method proposed is based on the in vitro mimics of IB protein solubilisation that we observed in vivo, by using crude cell extracts to solubilise purified inclusion bodies. We have also analysed the application of a high hydrostatic pressure to dissociate IBs and refold recombinant protein. Both methods offer advantages from the actual strategies used up to now, such as they are more ecological since they skip the use of chemical agents, they are more economical and easy to adapt to industrial scale and in the first case, it is more generic.