Covarianza dinámica en un sistema odométrico real para la mejora de la localización con sensores a bordo
-
1
Universidad de La Laguna
info
- Carlos Balaguer Bernaldo de Quirós (ed. lit.)
- José Manuel Andújar Márquez (ed. lit.)
- Ramón Costa Castelló (ed. lit.)
- C. Ocampo-Martínez (coord.)
- Juan Jesús Fernández Lozano (ed. lit.)
- Matilde Santos Peñas (ed. lit.)
- José Simo (ed. lit.)
- Montserrat Gil Martínez (ed. lit.)
- José Luis Calvo Rolle (ed. lit.)
- Raúl Marín (ed. lit.)
- Eduardo Rocón de Lima (ed. lit.)
- Elisabet Estévez Estévez (ed. lit.)
- Pedro Jesús Cabrera Santana (ed. lit.)
- David Muñoz de la Peña Sequedo (ed. lit.)
- José Luis Guzmán Sánchez (ed. lit.)
- José Luis Pitarch Pérez (ed. lit.)
- Óscar Reinoso García (ed. lit.)
- Óscar Déniz Suárez (ed. lit.)
- Emilio Jiménez Macías (ed. lit.)
- Vanesa Loureiro-Vázquez (ed. lit.)
Publisher: Servizo de Publicacións ; Universidade da Coruña
Year of publication: 2022
Pages: 835-842
Congress: Jornadas de Automática (43. 2022. Logroño)
Type: Conference paper
Abstract
In this paper a sensor fusion strategy is presented in order to improve the localization system of an intelligent wheelchair. The sensors used in the sensorial fusion are a Lidar, an odometric system and a IMU. Each sensor data is characterized by its covariance. The classic approach set a static covariance for the odometric system, however with a dynamic covariance wich characterize the sensor real time better results can be obtained. In this paper static covariance is compared to dynamic one using an external sensor. The Kalman model is also compared between a lineal continuos velocity model and a real odometric model.