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Abstract

We generalize Mattei’s result relative to the Briançon–Skoda theorem for foliations to the
amily of foliations of the second type. We use this generalization to establish relationships
etween the Milnor and Tjurina numbers of foliations of second type, inspired by the results
btained by Liu for complex hypersurfaces and we determine a lower bound for the global Tjurina
umber of an algebraic curve.
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1. Introduction and Statement of the results

The problem of deciding whether an element of a ring belongs to a given ideal of
he ring is known as the ideal membership and dates back to works of Dedekind who
ave the precised definition of an ideal. Even if we know generators of the ideal, it is
ot trivial to determine if an element is a member of it. Therefore it is interesting to
ive sufficient conditions for ideal membership. An important theorem in this line is the
ilbert’s Nullstellensatz: it states that if I in an ideal in the ring of germs of holomorphic

functions at 0 ∈ Cn and f vanishes on the zero locus of I then there is a power of f
belonging to I . The Briançon–Skoda Theorem can be seen as an effective version of
he Hilbert Nullstellensatz when I is a jacobian ideal. Let us clarify this last statement.
et f (x1, . . . , xn) ∈ C{x1, . . . , xn} be a non-unit convergent power series. Consider its

acobian ideal J ( f ) = (∂x1 f, . . . , ∂xn f ). According to Wall [18] it was Mather who asked
about the smallest r for which f r

∈ J ( f ). It was known then that f is an element of
the integral closure of J ( f ), which implies the existence of a power of f belonging to
J ( f ). At that time it was also known, thanks to Saito [14], that if the origin is an isolated
critical point of f then f belongs to J ( f ) iff f is a quasi-homogeneous polynomial.

riançon and Skoda [16] proved, using analytic results of Skoda, that f n
∈ J ( f ). Later,

ipman and Teissier [8] gave an algebraic proof of this algebraic statement. Subsequently,
riançon–Skoda Theorem has been generalized in different contexts, and has given rise

o abundant literature. In Foliation Theory, Mattei proved

heorem 1. ([12, Théorème C]). Let F be a non-dicritical generalized curve holomor-
hic foliation at (C2, p) given by ω = P(x, y)dx + Q(x, y)dy. If f (x, y) = 0 is the
educed curve of total union of separatrices of F then f 2 belongs to the ideal (P, Q).

In this paper, we extend Theorem 1 to the family of second type foliations (perhaps
icritical) and show (see Example 3.2) that it is essential that the foliation be of the
econd type.

heorem A. Let F be a germ of a second type holomorphic foliation at (C2, p) induced
y ω = P(x, y)dx + Q(x, y)dy, where P, Q ∈ C{x, y}, and let F = f/h be a reduced
alanced equation of separatrices for F . Then f 2 belongs to the ideal (P, Q).

In Section 2 we introduce all the notions and tools necessary to prove Theorem A.
e are inspired by Mattei’s proof but to extend it to the dicritical case we use the

haracterizations of the dicritical second type foliations given by Genzmer in [6]. The
roof of Theorem A is given in Section 3. In Section 4, we obtain relationships between
he Milnor number, µp(F), and the Tjurina number, τp(F ,B0), of the foliation F with
espect to the zero divisor B0 of a balanced divisor of separatrices B = B0 − B∞ of F ,
nspiring us to do so in the work of Liu [9] for complex hypersurfaces. More precisely,
f PF is a generic polar curve of F , νp(.) denotes the algebraic multiplicity of a curve
nd i p(., .) denotes the intersection multiplicity of two curves then we get

heorem B. Let F be a singular holomorphic foliation of second type at (C2, p). Let
= B0 − B∞ be a balanced divisor of separatrices for F . Then

(νp(B0) − 1)2
+ νp(B∞) − i p(PF ,B∞) − i p(B0,B∞) (∗)

≤
µp(F)

≤ τp(F ,B0), (1)

2 2
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and the equality (∗) holds if F is a generalized curve foliation and B0 is defined by a
germ of semi-homogeneous function at p. Moreover, if B∞ = ∅, then

νp(F)2

2
≤
µp(F)

2
≤ τp(F ,B0).

Finally, as consequence of Theorem B, in Section 5, we obtain a lower bound for the
global Tjurina number of an algebraic curve.

2. Preliminaries

Let F be a germ of singular holomorphic foliation at (C2, p), in local coordinates
(x, y) centered at p, the foliation is given by a holomorphic 1-form

ω = P(x, y)dx + Q(x, y)dy, (2)

r by its dual vector field

v = −Q(x, y)
∂

∂x
+ P(x, y)

∂

∂y
, (3)

here P(x, y), Q(x, y) ∈ C{x, y} are relatively prime, and C{x, y} is the ring of complex
onvergent power series in two variables. The algebraic multiplicity of F , denoted by
p(F), is the minimum of the orders νp(P), νp(Q) at p of the coefficients of ω.

We say that C : f (x, y) = 0, with f (x, y) ∈ C{x, y}, is an F-invariant curve if

ω ∧ d f = ( f.h)dx ∧ dy,

or some h ∈ C{x, y}. A separatrix of F is an irreducible F-invariant curve. Denote by
Sepp(F) the set of all separatrices of F through p. If Sepp(F) is a finite set then we say
hat the foliation F is non-dicritical and we call total union of separatrices of F to the
nion of all elements of Sepp(F). Otherwise we will say that F is a dicritical foliation.

A point p ∈ C2 is a reduced or simple singularity for F if the linear part Dv(p) of
he vector field v in (3) is non-zero and has eigenvalues λ1, λ2 ∈ C fitting in one of the

two following cases:

(i) λ1λ2 ̸= 0 and λ1/λ2 ̸∈ Q+ (in which case we say that p is a non-degenerate or
complex hyperbolic singularity).

(ii) λ1 ̸= 0 and λ2 = 0 (in which case we say that p is a saddle–node singularity).

The reduction process of the singularities of a codimension one singular foliation over
an ambient space of dimension two was achieved by Seidenberg [15].

A singular foliation F at (C2, p) is a generalized curve foliation if it has no
addle–nodes in its reduction process of singularities. This concept was defined by
amacho–Lins Neto–Sad [3, Page 144]. In this case, there is a system of coordinates

x, y) in which F is induced by the equation

ω = x(λ1 + a(x, y))dy − y(λ2 + b(x, y))dx, (4)

here a(x, y), b(x, y) ∈ C{x, y} are non-units, so that Sepp(F) is formed by two
ransversal analytic branches given by {x = 0} and {y = 0}. In the case (2), up to a
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formal change of coordinates, the saddle–node singularity is given by a 1-form of the
type

ω = xk+1dy − y(1 + λxk)dx, (5)

where λ ∈ C and k ∈ Z>0 are invariants after formal changes of coordinates (see
10, Proposition 4.3]). The curve {x = 0} is an analytic separatrix, called strong, whereas
{y = 0} corresponds to a possibly formal separatrix, called weak or central.

Let F be a foliation at (C2, p), given by a 1-form as in (2), with reduction process
π : (X̃ ,D) → (C2, p) and let F̃ = π∗F be the strict transform of F . Denote by Sing(·)
the set of singularities of a foliation. A saddle–node singularity q ∈ Sing(F̃) is said to
be a tangent saddle–node if its weak separatrix is contained in the exceptional divisor
D, that is, the weak separatrix is an irreducible component of D.

A foliation is in the second class or is of second type if there are no tangent
saddle–nodes in its reduction process of singularities. This notion was studied by
Mattei–Salem [13] in the non-dicritical case and by Genzmer [6] for arbitrary foliations.

For a fixed reduction process of singularities π : (X̃ ,D) → (C2, p) for F , a
component D ⊂ D can be:

• non-dicritical, if D is F̃-invariant. In this case, D contains a finite number of simple
singularities. Each non-corner singularity of D carries a separatrix transversal to D,
whose projection by π is a curve in Sepp(F). Remember that a corner singularity
of D is an intersection point of D with other irreducible component of D.

• dicritical, if D is not F̃-invariant. The reduction process of singularities gives that D
may intersect only non-dicritical components of D and F̃ is everywhere transverse
to D. The π -image of a local leaf of F̃ at each non-corner point of D belongs to
Sepp(F).

Denote by Sepp(D) ⊂ Sepp(F) the set of separatrices whose strict transforms by
π intersect the component D ⊂ D. If B ∈ Sepp(D) with D non-dicritical, B is said
to be isolated. Otherwise, it is said to be a dicritical separatrix. This determines the
decomposition Sepp(F) = I sop(F)∪ Dicp(F), where notations are self-evident. The set
I sop(F) is finite and contains all purely formal separatrices. It subdivides further in two
classes: weak separatrices – those arising from the weak separatrices of saddle–nodes
– and strong separatrices – corresponding to strong separatrices of saddle–nodes and
separatrices of non-degenerate singularities. On the other hand, if Dicp(F) is non-empty
then it is an infinite set of analytic separatrices. Observe that a foliation F is dicritical
when Sepp(F) is infinite, which is equivalent to saying that Dicp(F) is non-empty.
Otherwise, F is non-dicritical.

Throughout the text, we would rather adopt the language of divisors of formal curves.
More specifically, a divisor of separatrices for a foliation F at (C2, p) is a formal sum

B =

∑
B∈Sepp(F )

aB · B, (6)

where the coefficients aB ∈ Z are zero except for finitely many B ∈ Sepp(F). The set of
eparatrices {B : aB ̸= 0} appearing in (6) is called the support of the divisor B and it is
enoted by supp(B). The degree of the divisor B is by definition degB =

∑
a .
B∈supp(B) B
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We denote by Divp(F) the set of all these divisors of separatrices, which turns into
a group with the canonical additive structure. We follow the usual terminology and
notation:

• B ≥ 0 denotes an effective divisor, one whose coefficients are all non-negative;
• there is a unique decomposition B = B0 −B∞, where B0,B∞ ≥ 0 are respectively

the zero and pole divisors of B;
• the algebraic multiplicity of B is νp(B) =

∑
B∈supp(B)

νp(B).

Following [6, page 5] and [7, Definition 3.1], we define a balanced divisor of
eparatrices for F as a divisor of the form

B =

∑
B∈Isop(F )

B +

∑
B∈Dicp(F )

aB · B,

where the coefficients aB ∈ Z are non-zero except for finitely many B ∈ Dicp(F), and,
or each dicritical component D ⊂ D, the following equality is respected:∑

B∈Dicp(D)

aB = 2 − val(D).

The integer val(D) stands for the valence of a component D ⊂ D in the reduction
rocess of singularities, that is, it is the number of components of D intersecting D other

from D itself.
The notion of balanced divisor of separatrices generalizes, to dicritical foliations, the

notion of total union of separatrices for non-dicritical foliations.
A balanced divisor B =

∑
B aB B of separatrices of F is called primitive if,

B ∈ {−1, 1} for any B ∈ supp(B). A balanced equation of separatrices is a formal
meromorphic function F(x, y) whose associated divisor B = B0 − B∞ is a balanced
divisor. A balanced equation is reduced or primitive if the same is true for the underlying
divisor.

By [6, Proposition 2.4] we have

νp(F) = νp(B) − 1 + ξp(F) (7)

and

F is a second type foliation if, and only if, νp(F) = νp(B) − 1, (8)

here B is a balanced divisor of separatrices for F and ξp(F) is the tangency excess of
at p (see [5, Definition 2.3]).

. Proof of Theorem A

Let F be a germ of a singular holomorphic foliation at (C2, p) induced by ω :=

P(x, y)dx + Q(x, y)dy, where P, Q ∈ C{x, y}, and consider π := σ1 ◦ . . . ◦ σℓ :

X̃ ,D) → (C2, p) a reduction of singularities of F at p ∈ C2. Denote by F = f/h
reduced balanced equation of separatrices for F , and by Z0 and Z∞ the respective

˜ ∗
trict transforms by π of the curves { f = 0} and {h = 0}. Let F = π (F) be the strict
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transform of F by π , XF̃ be the sheaf of (holomorphic) vector fields tangent to F̃ , XZ0

be the sheaf of vector fields tangent to the divisor D and to Z0, and H 1(D̃,XF̃ ) the first
ohomology group of XF̃ on D̃.

We have the following proposition:

roposition 3.1. Let F be a germ of a second type holomorphic foliation at (C2, p)
nd let F = f/h be a reduced balanced equation of separatrices for F . Put ϕ = f ◦π .
hen, the morphism

[ϕ]· : H 1(D,XF̃ ) → H 1(D,XF̃ ), [Yi j ] ↦−→ [ϕ · Yi j ]

is identically zero.

Proof. We will prove by induction on the number ℓ of blow-ups needed to obtain the
reduction of singularities of F . If ℓ = 1, then H 1(D̃,XF̃ ) is of finite dimension by
[11, Lemme 2.2.1]. From the proof of [11, Lemme 2.2.1] we have X i j = x i

1 y j
1 X1 such

hat (i, j) ∈ I = {(i, j) ∈ N × Z : i ≥ 0, and i − νp(F) + ϵp(F) < j < 0} induce a
asis for H 1(D̃,XF̃ ), where x1 = x , y1 =

y
x and x2 =

x
y , y2 = y are the local coordinates

f the blow-up X̃ , X1 =
1

x
νp (F )−ϵp (F )
1

· v(1), and v(1) is the vector field inducing σ ∗

1 (F).

herefore the sections of the form

xα1 yβ1 X1 such that (α, β) ∈ N × Z, β ≥ 0 or β ≤ α − νp(F) + ϵp(F) (9)

re elements of B̌(D,XF̃ ) (i.e. 1-coboundary of XF̃ ). Since F is of second type,
p(F) = νp(F) − 1, which implies that νp( f ) = νp(h) + νp(F) + 1. In particular,
= f ◦ π ∈ (xνp(h)+νp(F )+1

1 ). Hence the sections ϕ · X i j with (i, j) ∈ I are elements of
B̌(D,XF̃ ) and the proof of proposition ends for ℓ = 1.

Now, for the general case, we use the exact sequence (see [11, page 312]):

0 →→ H 1(D̃,XF̃1 )
ρ →→ H 1(D,XF̃ )

ψ →→ H 1(D′,XF̃ ) →→ 0

where D̃ = σ−1
1 (p), F̃1 is the strict transform of F by σ1, D′ is the union of irreducible

omponents of D different of D̃, ψ is the restriction morphism and ρ is the morphism
nduced by the natural inclusion of D̃ in D. Finally, since the following diagram is
ommutative

0 →→ H 1(D̃,XF̃1 )
ρ →→

[ f ◦σ1]·
↓↓

H 1(D,XF̃ )
ψ →→

[ϕ]·

↓↓

H 1(D′,XF̃ ) →→

[ f ◦σ2◦...◦σℓ]·

↓↓

0

0 →→ H 1(D̃,XF̃1 )
ρ →→ H 1(D,XF̃ )

ψ →→ H 1(D′,XF̃ ) →→ 0

we get [ϕ]· is identically zero, because [ f ◦ σ1]· and [ f ◦ σ2 ◦ . . . ◦ σℓ]· are morphisms
identically zero by the first step of the proof and induction hypothesis, respectively. □

Now, we prove our main result.
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Theorem A. Let F be a germ of a second type holomorphic foliation at (C2, p) induced
by ω = P(x, y)dx + Q(x, y)dy, where P, Q ∈ C{x, y}, and let F = f/h be a reduced
balanced equation of separatrices for F . Then f 2 belongs to the ideal (P, Q).

Proof. Let π : (X̃ ,D) → (C2, p) be a reduction of singularities of F and F̃ = π∗(F)
e the strict transform of F by π . According to Genzmer [6, Proposition 3.1], since F
s of second type, we have the exact sequence of sheaves

0 →→ XF̃
→→ XZ0

π∗( ωF )
→→ O(−Z∞) →→ 0,

where XF̃ be the sheaf of vector fields tangent to F̃ and let XZ0 be the sheaf of vector
fields tangent to the divisor D and to Z0. Then, there exists a covering of D by open
subsets Vi ⊂ X̃ and holomorphic vector fields X i ∈ XZ0 (Vi ) such that

π∗

(ω
F

)
(X i ) = h ◦ π, O(−Z∞) = (h ◦ π )O,

which implies that

π∗(ω)(X i ) = (F ◦ π ) · (h ◦ π ) = f ◦ π. (10)

Let X i j := X i − X j . It follows from (10) that π∗(ω)(X i j ) = 0. Hence X i j is a 1-cocycle
with values over the sheaf XF̃ and therefore

[( f ◦ π )X i j ] = 0 ∈ H 1(D,XF̃ ),

by Proposition 3.1. Thus, there exists a holomorphic vector field ṽ on D such that
ṽ|Vi = ( f ◦ π ) · X i . Up multiplication by f ◦ π in (10), we get

π∗(ω)(ṽ) = ( f ◦ π )2
= f 2

◦ π.

The direct image of ṽ by π over (C2, p) is a holomorphic vector field outside the origin
of C2. The proof ends, by applying Hartogs extension theorem. □

We note that Theorem A is optimal, in the sense, that the hypothesis on the foliation
be of second type cannot be removed. For instance, we have the following example.

Example 3.2. Let ω = y(2x8
+2(λ+1)x2 y3

− y4)dx + x(y4
− (λ+1)x2 y3

− x8)dy be a
-form defining a singular foliation F at (C2, 0), which is not of second type and xy = 0
s the equation of an effective divisor of separatrices for F (see [5, Example 6.5]). We
laim that (xy)2 does not belong to the ideal generated by the coefficients of ω. In fact, if

P(x, y) := y(2x8
+2(λ+1)x2 y3

−y4), Q(x, y) := x(y4
−(λ+1)x2 y3

−x8) and we suppose
hat (xy)2

= a(x, y)P(x, y) + b(x, y)Q(x, y) for some a(x, y), b(x, y) ∈ C[[x, y]]
hen 4 = ord(xy)2

≥ min{ord(a(x, y)P(x, y)), ord(b(x, y)Q(x, y))} ≥ 5 which is a
ontradiction.

The following corollary will be useful in the following section:

orollary 3.3. Let F be a germ of a second type holomorphic foliation at (C2, p)
nduced by ω = P(x, y)dx + Q(x, y)dy, where P, Q ∈ C{x, y}, and let B be a reduced
alanced equation of separatrices for F . If B0 : f (x, y) = 0 and f̄ is the coset of

f modulo (P, Q) then the complex vector spaces ( f, P, Q)/(P, Q) and ( f̄ )/( f̄ 2) are

somorphic.
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Proof. Put T = ( f, P, Q). The map ψ : T −→ ( f̄ )/( f̄ 2) given by

ψ(gz f + αP + βQ) = gz f mod ( f̄ 2)

is an epimorphism of complex vector spaces. Finally by Theorem A the kernel of ψ
equals (P, Q). □

4. Milnor and Tjurina numbers after the Briançon-Skoda theorem

Let F be a singular holomorphic foliation at (C2, p) given by the 1-form ω :=

P(x, y)dx + Q(x, y)dy. Assume that F has an isolated singularity at p and consider
he jacobian ideal associated with F given by J (F) = (P, Q). Then M(F) :=

[[x, y]]/J (F) is a finite C-dimensional vector space which dimension is called the
ilnor number of F and we denote it by µp(F). It is well-known, after [3], that the
ilnor number is a topological invariant of the foliation. Let C : f (x, y) = 0 be an
-invariant reduced curve. Put T (F ,C) := C[[x, y]]/( f, P, Q), where (·, ·, ·) denotes

he ideal generated by three elements in C[[x, y]].
The Tjurina number of F with respect to C is

τp(F ,C) = dimC T (F ,C).

Let B be a balanced divisor of separatrices for F . Put B0 : f (x, y) = 0 the zero divisor
f B. By definition τp(F ,B0) ≤ µp(F). Put T = ( f, P, Q). From the third isomorphic
heorem for complex vector spaces we have

τp(F ,B0) = dimC C[[x, y]]/T = dimC M(F) − dimC T/J (F),

so

µp(F) − τp(F ,B0) = dimC T/J (F). (11)

For any z ∈ C[[x, y]] we denote by z̄ the coset of z modulo J (F) and ẑ its coset
odulo T. Inspired by Liu [9] we consider the exact sequence

0 −→ Ker σ
i

−→ M(F)
σ

−→ M(F)
δB

−→ T (F ,B0) −→ 0,

here i is the inclusion map, σ is the multiplication by f̄ , that is, σ (z̄) = z f and
δB(z̄) = ẑ. Since δB is surjective, we get

µp(F) − τp(F ,B0) = dimC Ker δB. (12)

From (12) and the equality µp(F) = dimC Ker σ + dimC Im σ , we conclude

τp(F ,B0) = dimC Ker σ = dimC(J (F) : B0)/J (F), (13)

here (J (F) : B0) = {z ∈ C[[x, y]] : z f ∈ J (F)}.

roposition 4.1. Let F be a singular holomorphic foliation of second type at (C2, p)
iven by the 1-form ω = P(x, y)dx + Q(x, y)dy = 0. Let B be a balanced divisor

of separatrices for F with B0 : f (x, y) = 0. Then τp(F ,B0) ≤ µp(F) ≤ 2τp(F ,B0).
oreover µp(F) = 2τp(F ,B0) if and only if ker σ = ( f̄ ), where f̄ is the coset of f
odulo (P, Q).
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Proof. Let us prove the inequality µp(F) ≤ 2τp(F ,B0). By Theorem A we get
f 2

∈ J (F), that is, f 2 = 0̄ ∈ M(F). Hence, we get the inclusion of ideals T ⊆ Ker σ .
oreover we have the following chain of ideals of M(F):

M(F) ⊇ ( f̄ ) ⊇ ( f̄ 2) = (0̄)

here (·) denotes a principal ideal. We also have the exact sequence:

0 → Ker σ ∩ ( f̄ )
i

→ ( f̄ )
σ ′

→ ( f̄ )
e

→ ( f̄ )/( f̄ 2) → 0,

here i is the inclusion map, σ ′ is the multiplication by the coset f̄ and e is the natural
pimorphism. We have

dimC Ker σ ′
+ dimC Im σ ′

= dimC( f̄ ) = dimC Ker e + dimC Im e

= dimC Im σ ′
+ dimC( f̄ )/( f̄ 2),

o from (13) we get

dimC( f̄ )/ ¯( f 2) = dimC Ker σ ′
= dimC Ker σ ∩ ( f̄ ) ≤ dimC Ker σ = τ (F ,B0).

After Corollary 3.3 we have dimC( f̄ )/( f̄ 2) = dimC T/J (F) and by (11) we conclude
p(F) ≤ 2τp(F ,B0). Finally µp(F) = 2τp(F,B0) if and only if Ker σ ∩ ( f̄ ) = Ker σ ,

o Ker σ ⊆ ( f̄ ). We conclude the proof since σ ( f̄ ) = 0̄. □

The intersection multiplicity of two curves C : f (x, y) = 0 and D : g(x, y) = 0 at the
oint p is by definition i p(C, D) = dimC C{x, y}/( f, g) where ( f, g) denotes the ideal
f C{x, y} generated by the power series f and g.

The polar curve of the singular foliation F : ω = P(x, y)dx + Q(x, y)dy = 0
t (C2, p) with respect to a point (a : b) of the complex projective line P1(C) is the
nalytic curve PF

(a:b) : a P(x, y) + bQ(x, y) = 0. There exists an open Zariski set U of
1(C) such that {a P(x, y) + bQ(x, y) = 0 : (a : b) ∈ U } is an equisingular family
f plane curves. Any element of this set is called generic polar curve of the foliation F
nd we will denote it by PF .

A germ of plane curve C : f (x, y) = 0 of multiplicity n is a semi-homogeneous
unction at p if and only if f = fn + g where fn is a homogeneous polynomial of
egree n defining an isolated singularity at p and g consists of terms of degree at least
+ 1.

heorem B. Let F be a singular holomorphic foliation of second type at (C2, p). Let
= B0 − B∞ be a balanced divisor of separatrices for F . Then

(νp(B0) − 1)2
+ νp(B∞) − i p(PF ,B∞) − i p(B0,B∞)

2
(∗)
≤
µp(F)

2
≤ τp(F ,B0),

(14)

nd the equality (∗) holds if F is a generalized curve foliation and B0 is defined by a
erm of semi-homogeneous function at p. Moreover, if B∞ = ∅, then

νp(F)2

≤
µp(F)

≤ τp(F ,B0).

2 2
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Proof. By [5, Proposition 4.2], for any singular foliation F we have

∆p(F ,B0) = i p(PF ,B0) + i p(B0,B∞) − µp(B0) − νp(B0) + 1, (15)

where ∆p(F ,B0) is the excess polar number of F with respect to B0. Since F is of
econd type, νp(F) = νp(B) − 1 = νp(B0) − νp(B∞) − 1 by Eq. (8), and therefore, from
15) we get

∆p(F ,B0) = i p(PF ,B0) + i p(B0,B∞) − µp(B0) − νp(F) − νp(B∞). (16)

On the other hand, after [7, Theorem A] we know that ∆p(F ,B0) ≥ 0, and equals
ero if and only if F is a generalized curve foliation. Hence from (16) we have

µp(B0) ≤ i p(PF ,B0) + i p(B0,B∞) − νp(F) − νp(B∞). (17)

ow, by applying [5, Lemma 4.4] to F , which is of second type, and by properties of
he intersection multiplicity one gets

i p(PF ,B0) = i p(PF ,B∞) + µp(F) + νp(F), (18)

o from (17) and (18),

µp(B0) ≤ µp(F) + i p(B0,B∞) + i p(PF ,B∞) − νp(B∞). (19)

t follows from the definition of the Milnor number, the properties of the intersection
ultiplicity and (19) that

(νp(B0) − 1)2
≤ µp(B0) ≤ µp(F) + i p(B0,B∞) + i p(PF ,B∞) − νp(B∞). (20)

bserve that the first inequality becomes an equality when B0 is defined by a germ
f semi-homogeneous function at p (see [17]) and the second inequality is an equality
f and only if F is a generalized curve foliation. Finally, the proof ends, up applying
roposition 4.1

(νp(B0) − 1)2
+ νp(B∞) − i p(B0,B∞) − i p(PF ,B∞) ≤ µp(F) ≤ 2τp(F ,B0). □

(21)

xample 4.2. We illustrate Theorem B with the radial foliation F given by the 1-form
= xdy − ydx . In this case we consider B0 = xy(x − y) and B∞ = x + y. We get

0(B0) = 3, 1 = ν0(B∞) = i0(PF ,B∞) = τ0(F ,B0) and i0(B0,B∞) = 3. Hence F
erifies (14).

emark 4.3. The family of foliations given in [5, Example 6.5] are defined by the
-form

ωk = y(2x2k−2
+ 2(λ+ 1)x2 yk−2

− yk−1)dx + x(yk−1
− (λ+ 1)x2 yk−2

− x2k−2)dy

s a family of dicritical foliations which are not of second type, B = (x) + (y) is an
ffective balanced divisor of separatrices for Fk . We get ν0(Fk) = k and τ0(Fk,B) =

k − 2. Hence the inequality

νp(F)2

2
≤ τp(F ,B)

ails for all k ≥ 6. Therefore, in Theorem B the second type hypothesis over F is
essential.
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5. A lower bound for the global Tjurina number of an algebraic curve

Let C be a reduced curve of degree deg(C) in the complex projective plane P2. Denote
y τ (C) the global Tjurina number of the curve C , which is the sum of the Tjurina

numbers at the singular points of C . In this section, under some conditions, we give a
ower bound for τ (C).

A holomorphic foliation F on P2 of degree d ≥ 0 is a foliation defined by a
olynomial 1-form Ω = A(x, y, z)dx + B(x, y, z)dy + C(x, y, z)dz, where A, B,C are
omplex homogeneous polynomials of degree d + 1, satisfying two conditions:

(1) the integrability condition Ω ∧ dΩ = 0,
(2) the Euler condition Ax + By + Cz = 0.

n algebraic curve C : f (x, y, z) = 0 is F-invariant if Ω ∧ d f = f Θ , where Θ is some
olynomial 2-form.

Denote by ⌈z⌉ the ceiling function evaluated at z ∈ R, that is, the smallest integer that
s greater than or equal to z ∈ R. We have:

heorem 5.1. Let F be a holomorphic foliation on P2 of degree d. Suppose that all
oints p ∈ Sing(F) are of second type. Then⌈

d2
+ d + 1 − 2

∑
p∈Sing(F ) GSVp(F , (Fp)0)

2

⌉
≤

∑
p∈Sing(F )

τp((Fp)0), (22)

here (Fp)0 is the zero divisor of a balanced equation of separatrices Fp for F at p. In
particular, if C is an F-invariant reduced curve in P2 such that Sing(F) ⊂ C and for

ll p ∈ Sing(F), the germ of C at p defines the zero divisor of a balanced equation of
eparatrices for F at p, then⌈

d2
+ d + 1 − 2(d + 2) deg(C) + 2 deg(C)2

2

⌉
≤ τ (C), (23)

Proof. Since all points p ∈ Sing(F) are of second type, then

µp(F) ≤ 2τp(F , (Fp)0) (24)

y Theorem B. According to [5, Proposition 6.2 ], we have τp(F , (Fp)0) = GSVp(F ,
Fp)0) + τp((Fp)0). Hence, up substituting in (24), we obtain

µp(F) − 2GSVp(F , (Fp)0)
2

≤ τp((Fp)0), for all p ∈ Sing(F).

he inequality (22) is proved by taking sum over all singular points of F , by using
p∈Sing(F ) µp(F) = d2

+ d + 1 (see [2, Page 19]) and considering the ceiling function.
he inequality (23) follows from∑

p∈Sing(F )∩C

GSVp(F ,C) = (d + 2) deg(C) − deg(C)2

iven in [1, Proposition 4] and considering again the ceiling function. □

The following example illustrates Theorem 5.1.
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Example 5.2. For each λ ∈ C, we consider the 1-form

ωλ = yzdx + λxzdy − (λ+ 1)xydz,

hich defines a foliation Fλ on P2 of degree one. The curve C : xyz = 0 has degree
hree and it satisfies all hypotheses of Theorem 5.1. Then⌈

12
+ 1 + 1 − 2(1 + 2)3 + 2 · 32

2

⌉
=

⌈
3
2

⌉
= 2 ≤ τ (C) = 3,

hich implies that the inequality (23) of Theorem 5.1 is verified. Observed that we equate
he bound given by du Plessis and Wall in [4, Theorem 3.2].
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