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Evelia R. Garćıa Barroso, Juan I. Garćıa-Garćıa,
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Abstract. This paper studies the p-Frobenius vector of affine semigroups
S ⊂ N

q. Defined with respect to a graded monomial order, the p-
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Introduction

An affine semigroup S ⊂ N
q is a set containing 0 and closed under addition. A

finite set A = {a1, . . . , ah} ⊂ N
q is a generating set of S if S =

{ ∑h
i=1 λiai |

λ1, . . . , λh ∈ N
}
. It is called a minimal generating set if it is the minimal set,

according to inclusion, generating S. In this work, S = 〈A〉 means that A is
the minimal set of generators of S. In what follows, when we talk about an
affine semigroup, we must understand a finitely generated affine semigroup.

Let S = 〈A〉 and n ∈ N
q, the set Zn(S) denotes {λ = (λ1, . . . , λh) ∈

N
h | n =

∑h
i=1 λiai}. The minimum integer cone containing S is C(S) ={ ∑h

i=1 λiai | λ1, . . . , λh ∈ Q≥0

} ∩ N
q. We say that S is a C-semigroup if

C(S)\S is a finite set. For q = 1, S is called a numerical semigroup when
N \ S is finite (equivalently, gcd(a1, . . . , ah) = 1).

An important invariant related to numerical semigroups is the Frobenius
number, defined as the maximum element f in Z \ S, that is, the largest
integer that cannot be written as a positive linear combination of the minimal
generators of S. Observe that f is the Frobenius number of S if and only if
f is the maximum integer satisfying Zf (S) = ∅. Thus, one may naturally
extend this definition to affine semigroups and call the Frobenius vector, the
maximum (for a fixed monomial order �) integer vector satisfying Zf (S) = ∅.
However, this maximum element might not exist for several reasons. The
worst case arises when {f ∈ C(S) | Zf (S) = ∅} is not finite. Nevertheless,
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when C(S)\S is finite, this maximum integer vector can be set by max�(C(S)\
S) for the fixed monomial order � ([11]). In [22], the possible Frobenius
vectors for an affine semigroup S such that C(S) = N

q and C(S)\S finite are
studied.

The first generalization of the Frobenius number appeared in Ref. [3],
but later many other generalizations of the Frobenius number/vector have
been introduced. For a numerical semigroup S, the most usual definitions of
generalized Frobenius number (called p-Frobenius number) are: the largest
integer n ∈ N such that #Zn(S) = p (see Ref. [4]), or the largest integer
n ∈ N such that #Zn(S) ≤ p (see Ref. [15] and references therein). These
definitions are also used for affine semigroups. In particular, a p-Frobenius
integer number associated with an affine semigroup was introduced in Ref.
[1].

In this work, for an affine semigroup S, we introduce the concept of
p-Frobenius vector of S (with respect to a graded monomial order �), which
is defined as F0(S) = max�{C(S) \ S}, and Fp(S) = max�{n ∈ C(S) | 0 <
�Zn(S) ≤ p}, for p > 0. When the set defining F0(S) is not finite, we set
F0(S) = (∞, . . . ,∞). Similarly, for p > 0, Fp(S) = (∞, . . . ,∞) when its
defining set is not finite. One of the goals of our work is to characterize when
Fp(S) is finite (Theorem 2.1), and, as a consequence, to provide an algorithm
to compute the p-Frobenius vector from the minimal generating set of any
affine semigroup (Algorithm 1). Moreover, we give two improved algorithms
for the cases p = 1 and p = 2. The case p = 0 was solved in Ref. [7]. In that
paper, the authors characterize the affine semigroups S such that C(S) \ S
is finite, and an algorithm to compute its gap sets is introduced. For both
results, only a generating set of S is required.

The other target of this paper is related to the gluing of semigroups.
The concept of gluing for numerical semigroups was introduced in Ref. [19].
With this nomenclature, the main result of Ref. [6] tells us that a numerical
semigroup is complete intersection if and only if it is gluing of two complete
intersection numerical semigroups (see Ref. [21, Chapter 8] and references
therein). The concept of gluing is generalized to affine semigroups in Ref. [20],
and in Ref. [9], it is proved that an affine semigroup is complete intersection
if and only if it is gluing of two complete intersection affine semigroups (see
also Ref. [2] and Ref. [12]). We consider the gluing of an affine semigroup
with N

q: given the affine semigroup S = 〈a1, . . . , ah〉 ⊂ N
q, d ∈ N and

γ ∈ S \ {a1, . . . , ah} with d and gcd(γ1, . . . , γq) coprime, S ⊕d,γ N
q is the

affine semigroup minimally generated by {da1, . . . , dah, γ}. We say that the
semigroup S ⊕d,γ N

q is an N
q-gluing (affine) semigroup. An interesting paper

on when two affine semigroups can be glued is Ref. [13]. In this context, it is
well known that the Frobenius number of a numerical semigroup generated
by two coprime elements {a, b} is (a − 1)(b − 1) ([23]), and it also exists an
exact formula for the Frobenius number when the semigroup is generated
by three elements ([24]). Moreover, for numerical semigroups, the Frobenius
number of S⊕d,γN is determined by dF0(S)+(d−1)γ ([6, Proposition 10]). In
this work, we study some properties of p-Frobenius vector of S′ = S ⊕d,γ N

q,
and determine an explicit way to obtain it from the p-Frobenius vector of S
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under certain conditions. If such conditions do not hold, an upper bound of
Fp(S′) is provided.

This work is structured as follows. Section 1 lays the necessary founda-
tion for understanding subsequent sections. In Sect. 2, we characterize when
the p-Frobenius vector is finite for any affine semigroup S, and we establish
an algorithm to compute it. Sections 3 and 4 are devoted to improve the
previous algorithm for p = 1, 2, respectively. In the last section (Sect. 5), we
study the p-Frobenius vector of the semigroup obtained from the gluing of
an affine semigroup with N

q. Throughout the paper, we use clear examples
to help understanding.

1. Preliminaries

For any n ∈ N\{0}, [1, n] denotes the set {1, . . . n}.
Given the minimal generating set {a1, . . . , ah} of an affine semigroup S,

and a field K, we can consider the S-graded polynomial ring K[x1, . . . , xh]
where the S-degree of a monomial Xα = xα1

1 · · · xαh

h is
∑h

i=1 αiai. In this
polynomial ring, we define the S-homogeneous polynomial ideal IS ⊂
K[x1, . . . , xh] as

IS =

〈

xα1
1 · · · xαh

h − xβ1
1 · · · xβh

h |
h∑

i=1

αiai =
h∑

i=1

βiai

〉

. (1)

This ideal is usually called the semigroup ideal of S. It is well known (see
[14]) that (pure) binomials finitely generate this ideal, and there exist some
minimal generating sets with respect to inclusion.

In this work, we use several concepts and tools related to computational
algebra. The reader can find the necessary background in Ref. [5]; here, we
collect the essential definitions and properties to improve his reading.

Let � be a monomial order on K[x1, . . . , xh], that is, a multiplicative
total order on the set of monomials satisfying that for any two monomials
Xα,Xβ with Xα ≺ Xβ , then XαXγ ≺ XβXγ for every monomial Xγ . Given
an ideal I ⊆ K[x1, . . . , xh], we denote by In≺(I), the set of leading terms of
non-zero elements of I, and 〈In≺(I)〉 the monomial ideal generated by In≺(I).
A finite subset G of I is a Gröbner basis of I if 〈In≺(I)〉 = 〈{In≺(g) | g ∈ G}〉,
where In≺(g) is the leading term of g. A Gröbner basis is reduced if all its
polynomials are monic and irreducible by its other polynomials. This reduced
basis is unique for each order. An algorithm for computing the (reduced)
Gröbner bases for I is given in Ref. [5, Chapter 2, §7]. It is also well known
that Gröbner bases of monomial (resp. binomial) ideals are sets of monomials
(resp. binomials).

Given a monomial order � and a Gröbner basis G, we denote by
NormalForm�(f,G), the remainder of the division of f ∈ K[x1, . . . , xh] by
G with respect to �. Since G is a Gröbner basis, NormalForm�(f,G) is
unique (see [5, Chapter 2, §6, Proposition 1]). Taking into account the def-
inition of Fp(S) given in the introduction, we not only assume that the or-
der is a monomial order but a graded one as well. That is, the monomi-
als are first compared by total degree, with ties broken by one other order
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(see [5, Chapter 8, §4, Proposition 1]). This is to avoid the following con-
tradictory cases: for instance, consider the affine semigroup S generated by
{(0, 1), (1, 1), (2, 0), (3, 0)} and the lexicographical order �lex; we have that
α(0, 1) has a unique writing for any α ∈ N, meaning that {n ∈ C(S) |
�Zn(S) = 1} is an infinite set so F1(S) = (∞,∞) according to definition;
nevertheless, it has a maximum with respect to �lex, which is (7, 0). Indeed,
graded monomial orders satisfy that �{s ∈ S | s � a} < ∞ for every a ∈ S.

2. Computing Fp(S)

Consider S ⊂ N
q an affine semigroup and � a graded monomial ordering on

N
q.

In this section, we provide an algorithm to compute Fp(S) for any p ∈ N.
Recall that to solve the problem for p = 0, you can use the results appearing
in Ref. [7]. The following result is the key to obtain such an algorithm for
p ≥ 1. Furthermore, it characterizes when Fp(S) ∈ N

q.

Theorem 2.1. Let S = 〈a1, . . . , ah〉 ⊂ N
q be an affine semigroup, p ∈ N \ {0},

and let � be a graded monomial ordering on N
q. Then, Fp(S) �= (∞, . . . ,∞)

if and only if, for every k ∈ [1, h], there exist λk, αk,i ∈ N, such that λkak =
∑h

i=1,i �=k αk,iai.

Proof. Without loss of generalization, assume that for k = 1, for every
λ ∈ N, the element λa1 cannot be expressed using only the generators
{a2, . . . , ah}. This implies that Zλa1(S) = {(λ, 0, . . . , 0)} (the only expres-
sion of λa1 is itself). Therefore, #Zλa1(S) = 1 for every λ ∈ N, and thus,
Fp(S) = (∞, . . . ,∞).

Conversely, let b =
∑h

i=1 μiai ∈ S such that there exists k ∈ [1, h] with
μk ≥ pλk, assume k = 1. We have that μ1 = pλ1 + d with d ∈ N, and

b = (pλ1 + d)a1 +
h∑

i=2

μiai = ((p − 1)λ1 + d)a1 +
h∑

i=2

μiai +
h∑

i=2

α1,iai =

((p − 2)λ1 + d)a1 +
h∑

i=2

μiai +
h∑

i=2

2α1,iai = · · · = da1 +
h∑

i=2

μiai +
h∑

i=2

pα1,iai.

Obtaining in this way, p+1 different factorizations of b. Thus, all the elements
with at most p factorizations are in the bounded set {∑h

i=1 γiai | γi ∈ N, γi ≤
pλi}, and therefore, Fp(S) ∈ N

q. �

Remark 2.2. Theorem 2.1 implies that the finiteness of the p-Frobenius vec-
tor, Fp(S), is independent of both the value p and the chosen graded mono-
mial order. In simpler terms, if F1(S) exists, then all Fp(S) for p ≥ 1 also
exist.

Corollary 2.3. Let S = 〈a1, . . . , ah〉 ⊂ N
q be an affine semigroup, p ∈ N\{0},

and � a graded monomial ordering on N
q. Then, Fp(S) �= (∞, . . . ,∞) if and

only if every extremal ray τ of C(S) contains at least two minimal generators
of S.



MJOM On 𝑝-Frobenius of Affine Semigroups Page 5 of 15    90 

Proof. If there is an extremal ray that contains only one minimal generator,
then that generator cannot be written as a combination of the other minimal
generators. Thus, by Theorem 2.1, Fp(S) is not finite.

Assume now that, every extremal ray τ of C(S) contains at least two
minimal generators of S. Let k ∈ [1, h], by Theorem 2.1, it is enough to prove
that a multiple of ak is a combination of the other minimal generators to
conclude. If ak is not in any extremal ray of C(S), then there exists λk ∈ N

such that λkak can be expressed using only the generators of S belonging to
the extremal rays of C(S). Otherwise, if ak is in an extremal ray τ of C(S),
by hypothesis, there exists another minimal generator aj ∈ τ , thus ak = αaj

for some α ∈ Q. Hence, there exist β, γ ∈ N, such that βak = γaj . �

Given a h-tuple Λ = (λ1, . . . , λh) ∈ N
h, once obtained the set

D(Λ, p) :=

{
h∑

i=1

γiai | γi ∈ N, γi ≤ pλi

}

, (2)

the algorithm to compute Fp(S) is straightforward from the proof of Theorem
2.1.

Algorithm 1 computes Fp(S). Note that, if Theorem 2.1 holds, then
any Gröbner basis of the ideal IS ⊂ K[x1, . . . , xh] associated with S con-
tains a binomial with a monomial like xαk

k , for all k ∈ [1, h]. Moreover, in
this procedure, the elements λk obtained are the smallest elements satisfying
λkak =

∑h
i=1,i �=k αiai.

Algorithm 1: Computation of Fp(S).
Input: A minimal system of generators {a1, . . . , ah} of S and p ∈ N.
Output: Fp(S).

1 if p = 0 then
2 if S is a numerical semigroup then
3 return The Frobenius number of S

4 if C(S) \ S is finite then
5 return The Frobenius vector of S

6 if C(S) \ S is not finite then
7 return (∞, . . . ,∞)

8 if there is an extremal ray of C(S) with only one minimal generator
of S then

9 return Fp(S) = (∞, . . . ,∞)

10 B ← a (reduced) Gröbner basis of IS ;
11 Λ ← (λ1, . . . , λh) ∈ N

h such that xλk

k is a monomial of a binomial in
B;

12 D ← D(Λ, p);
13 return Fp(S) = max�{n ∈ D | 0 < #Zn(S) ≤ p}
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Example 2.4. Let S be the affine semigroup generated by the elements of
the set A = {(3, 0), (4, 0), (0, 5), (0, 6), (1, 1)} and consider the graded lexico-
graphic order the monomial ordering used in this example. The set A is a
minimal generating set of S and the ideal of the semigroup is generated by

{
x6

3 − x5
4, x2x

4
4 − x4

3x
4
5, x2x

2
3 − x4x

4
5, x

2
2x

3
4 − x2

3x
8
5,

x3
2x

2
4 − x12

5 , x1x
5
5 − x2

2x3, x1x
3
4 − x3

3x
3
5, x1x3x5 − x2x4, x1x

3
3 − x2

4x
3
5,

x1x2x
2
4 − x3x

7
5, x1x

2
2x3x4 − x11

5 , x2
1x4 − x6

5, x
3
1x3 − x2x

5
5, x

4
1 − x3

2

}
.

Note that the monomials x4
1, x3

2, x6
3, x5

4, and x11
5 appear in the above set.

Thus, Λ = (4, 3, 6, 5, 11). The set D(Λ, 1) is equal to

{(3γ1 + 4γ2 + γ5, 5γ3 + 6γ4 + γ5) | (0, 0, 0, 0, 0) ≤ γ ≤ (4, 3, 6, 5, 11)},

containing 1835 elements. Ordering this set with respect to the fixed mono-
mial order, the greatest element n having #Zn(S) equal to 1 is (21, 4), and
therefore, F1(S) = (21, 4).

3. Computing the 1-Frobenius Vector from Gröbner Basis of
IS

While Algorithm 1 efficiently calculates the p-Frobenius vector Fp(S) for any
p and monomial order �, its dependence on large sets like D(Λ, p) can limit its
efficiency. This section presents an improved algorithm specifically for F1(S)
by leveraging computational algebra tools, offering greater efficiency for this
common case.

In general, given any monomial Xα ∈ K[x1, . . . , xh] with S-degree
m, and any Gröbner basis B of IS with respect to a monomial order �′

NormalForm�′(Xα,B) �= Xα implies that #Zm(S) > 1. Indeed, since the
elements of B are binomials, then NormalForm�′(Xα,B) is a monomial, say,
Xβ ; thus, Xα − Xβ ∈ IS , meaning that they have the same S-degree, so
α, β ∈ Zm(S). Hence, if you consider the following set (equivalent to D(Λ, 1)),

D′(Λ) = {(γ1, . . . , γh) | γi ∈ N, γi ≤ λi} ,

the elements mγ =
∑h

i=1 γiai ∈ S with γ ∈ D′(Λ) and such that #Zmγ
(S) =

1 satisfy NormalForm�′(Xγ ,B) = Xγ . This fact can be used to improve
Algorithm 1 for p = 1.

The following lemma also improves Algorithm 1 for p = 1. Consider that
B = {Xu1 − Xv1 , . . . , Xut − Xvt} is the reduced Gröbner basis of IS with
respect to �′, and let Iv ⊂ K[x1, . . . , xh] be the monomial ideal generated by
{Xv1 , . . . , Xvt}. We assume the leading term of Xui − Xvi is Xui for any i.

Lemma 3.1. Let α = (α1, . . . , αh) ∈ D′(Λ) such that NormalForm�′(Xα,B) =
Xα. Then, #Z∑h

i=1 αiai
(S) > 1 if and only if Xα ∈ Iv.

Proof. Since NormalForm�′(Xα,B) = Xα, Xα is not the leading term of any
binomial in IS respect to �′.
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Assume #Z∑h
i=1 αiai

(S) > 1. Then, there is β ∈ N
h with

∑h
i=1 βiai =

∑h
i=1 αiai, and β �= α, that is, Xβ −Xα ∈ IS . Hence, there exist f1, . . . , ft ∈

K[x1, . . . , xh] such that Xβ − Xα =
∑t

i=1 fi(Xui − Xvi). Therefore, Xβ is
the leading term of Xβ − Xα, and then, Xα has to be equal to XγXvi for
some i ∈ [1, t] and Xγ ∈ K[x1, . . . , xh]. We have that Xα ∈ Iv.

Conversely, suppose Xα ∈ Iv, so Xα is equal to Xβ − Xvj for some
j ∈ [1, t] and Xβ ∈ K[x1, . . . , xh]. Hence,

∑h
i=1 αiai =

∑h
i=1(βi + vji)ai,

where vj = (vj1, . . . , vjh). On the other hand, Xuj − Xvj ∈ IS , and so,
∑h

i=1(βi+vji)ai =
∑h

i=1(βi+uji)ai with uj = (uj1, . . . , ujh). Thus, α = β+vj

and β + uj are two different elements in Z∑h
i=1 αiai

(S). �

Algorithm 2: Improved computation of F1(S).
Input: A minimal system of generators {a1, . . . , ah} of S.
Output: F1(S)

1 if there is an extremal ray of C(S) with only one minimal generator
of S then

2 return F1(S) = (∞, . . . ,∞).

3 B ← a (reduced) Gröbner basis of IS ;
4 Λ ← (λ1, . . . , λh) ∈ N

h such that xλk

k is a monomial of a binomial in
B;

5 D ← {γ = (γ1, . . . , γh) ∈ D′(Λ) | NormalForm�k
(Xγ ,B) = Xγ};

6 D ← {γ = (γ1, . . . , γh) ∈ D | Xγ /∈ Iv};
7 return F1(S) = max�{∑h

i=1 γiai | (γ1, . . . , γh) ∈ D}

Note that the previous results mean that the set of elements m ∈ S with
#Zm(S) = 1 corresponds to the set of monomials in Xα ∈ K[x1, . . . , xh] such
that Xα /∈ 〈In≺(I)〉+Iv. Furthermore, the monomial ideal 〈In≺(I)〉+Iv does
not depend on the fixed monomial order. This fact allows us to introduce an
alternative algorithm to compute F1(S).

Algorithm 3: Improved (v2) computation of F1(S).
Input: A minimal system of generators {a1, . . . , ah} of S.
Output: F1(S).

1 if there is an extremal ray of C(S) with only one minimal generator
of S then

2 return F1(S) = (∞, . . . ,∞).

3 B ← a (reduced) Gröbner basis of IS ;
4 Ω ← {γ ∈ N

h | Xγ is a monomial of a binomial of B};
5 D ← N

h \ ∪γ∈Ω(γ + N
h);

6 return F1(S) = max�{∑h
i=1 γiai | (γ1, . . . , γh) ∈ D}
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Example 3.2. Consider the same semigroup of Example 2.4. From the mono-
mials of the Gröbner basis computed, we obtain the set of tuples

Ω = {(0, 0, 0, 5, 0), (0, 0, 6, 0, 0), (0, 1, 0, 4, 0),

(0, 0, 4, 0, 4), (0, 1, 2, 0, 0), (0, 0, 0, 1, 4),

(0, 2, 0, 3, 0), (0, 0, 2, 0, 8), (0, 3, 0, 2, 0),

(0, 0, 0, 0, 12), (0, 2, 1, 0, 0), (1, 0, 0, 0, 5),

(1, 0, 0, 3, 0), (0, 0, 3, 0, 3), (0, 1, 0, 1, 0),

(1, 0, 1, 0, 1), (1, 0, 3, 0, 0), (0, 0, 0, 2, 3),

(1, 1, 0, 2, 0), (0, 0, 1, 0, 7), (1, 2, 1, 1, 0),

(0, 0, 0, 0, 11), (2, 0, 0, 1, 0), (0, 0, 0, 0, 6),

(3, 0, 1, 0, 0), (0, 1, 0, 0, 5), (0, 3, 0, 0, 0),

(4, 0, 0, 0, 0)}.

The set {∑5
i=1 αiai|α ∈ N

5 \∪γ∈Ω(γ +N
5)} has cardinality 179 and its max-

imum with respect to the monomial order is (21, 4). Thus, F1(S) = (21, 4),
the same we obtained with Algorithm 1.

4. 2-Frobenius Vector and Indispensable Binomials

Continuing with the established notation, consider a graded monomial order
� in N

q and an affine semigroup S generated by {a1, . . . , ah}, as in the
preceding sections. It is well known that all the minimal generating sets of
the semigroup ideal IS have the same cardinality. Moreover, these sets are
characterized using simplicial complexes (see Ref. [17], and the references
therein). Let Cm ⊂ K[x1, . . . , xh] be the set of monomials of S-degree m ∈ S.
In Ref. [8], it is introduced the simplicial complex ∇m =

{
F ⊆ Cm | gcd(F ) �=

1
}
, where gcd(F ) denotes the greatest common divisor of the monomials in

F , and m belongs to S. Since xα1
1 · · · xαh

h ∈ Cm if and only if m =
∑h

i=1 αiai,
the vertex set of ∇m consists of all the monomials of S-degree m ∈ S, which
is equivalent to the set of all the ways of writing m as a linear combination
of the generators of S.

We have the characterization of the minimal generating sets of IS .

Theorem 4.1. ([8]) Let Λ = {Xu1 − Xv1 , . . . , Xut − Xvt} ⊂ IS, and M =
{S-degree(Xui) | i ∈ [1, t]}. Then, Λ is a minimal generator set of IS if and
only if
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1. The simplicial complex ∇m is non-connected for any m ∈ M .
2. For any m ∈ M :

(a) the cardinality of Bm is equal to the number of connected compo-
nents of ∇m minus one;

(b) the monomials Xu and Xv of any binomial Xu −Xv ∈ Bm belong
to different connected components of ∇m;

(c) there is at least a monomial of every connected component of ∇m,
where Bm is the set of binomials of S-degree m in Λ.

From the study of the uniqueness of the minimal generating set of IS ,
the definition of the indispensable binomial of IS arises. An indispensable
binomial of IS is a binomial that appears (up to a scalar multiple) in every
generator set of IS . Equivalently, Xα −Xβ ∈ IS is an indispensable binomial
if and only if ∇m =

{{Xα}, {Xβ}}
, where m is the S-degree of Xα and Xβ

(see Corollary 7 in [16]).

Lemma 4.2. Let S be an affine semigroup such that there exists m ∈ S with
�Zm(S) = 2. Then, there is at least an indispensable binomial in IS.

Proof. The equality �Zm(S) = 2 implies that either ∇m =
{{Xα}, {Xβ}}

or ∇m =
{{Xα}, {Xβ}, {Xα,Xβ}}

. For the first case, Xα − Xβ is an indis-
pensable binomial in IS , and for the second one, gcd(Xα,Xβ)−1

(
Xα − Xβ

)

is an indispensable binomial. �

Corollary 4.3. Given S an affine semigroup satisfying the hypothesis of The-
orem 2.1. If there is no indispensable binomial in IS, then F1(S) = F2(S).

From D(Λ, 2), as defined in (2), we set

D′′(Λ) = {γ = (γ1, . . . , γh) | γi ∈ N, γi ≤ 2λi} .

Corollary 4.4. Let γ ∈ D′′(Λ) satisfying #Z∑h
i=1 γiai

(S) = 2. Then, there

exist γ′ ∈ D′′(Λ) and Xδ ∈ K[x1, . . . , xh] such that Xγ−Xγ′
= Xδ

(
Xα−Xβ

)

with Xα − Xβ an indispensable binomial in IS.

Similar to the case p = 1, we can leverage results from this section
to enhance Algorithm 1 for p = 2. We can determine whether there are
elements in the semigroup with only two ways of writing by checking whether
there are any indispensable binomials in IS . Furthermore, if there are some
indispensable binomials, we can significantly reduce the set of elements in
the semigroup that can have two ways of writing.
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Algorithm 4: Improved computation of F2(S).
Input: A minimal system of generators {a1, . . . , ah} of S.
Output: F2(S).

1 if there is an extremal ray of C(S) with only one minimal generator
of S then

2 return (∞, . . . ,∞)

3 if there is no indispensable binomial in IS then
4 return F2(S) = F1(S)

5 B ← a (reduced) Grööbner basis of IS ;
6 Λ ← (λ1, . . . , λh) ∈ N

h such that xλk

k is a monomial of a binomial in
B;

7 D ← D′′(Λ);
8 I ← the set of indispensable binomials in IS ;
9 G ← {(γ, γ′) ∈ N

2h | Xγ − Xγ′ ∈ I};
10 D ← D \ {γ, γ′ ∈ N

h | (γ, γ′) ∈ G};
11 G ← {γ ∈ N

h | (γ, γ′) ∈ G for some γ′ ∈ N
h};

12 while there is γ, γ′ ∈ D with Xγ − Xγ′
= bXδ, such that b ∈ I do

13 if #Z∑h
i=1 γiai

(S) = 2 then

14 G ← G ∪ {γ};
15 D ← D \ {γ, γ′};

16 f ← max�{∑h
i=1 γiai | (γ1, . . . , γh) ∈ G};

17 return F2(S) = max�{F1(S), f}

Example 4.5. Continuing with the semigroup of the Examples 2.4 and 3.2.
For this semigroup, all the binomials of the Gröbner basis given in Example
2.4 are indispensable.

We have that Λ = (4, 3, 6, 5, 11), and therefore, the set D′′(Λ) is equal to
{γ ∈ N

p | γ ≤ (8, 6, 12, 10, 22)}. We use the bound (8, 6, 12, 10, 22) to compute
the set G from the set D that initially contains 126721 elements. These ele-
ments are the factorizations of 10071 different elements in the monoid S. We
search the maximum with respect to the graded lexicographic order having
exactly 2 factorizations. For this sake, we sort all the 10071 different elements
obtained in the semigroup, and, starting from the biggest one, the element
(70, 164), we stop after we find an element with exactly 2 factorizations. The
element found is (2, 83), and thus, F2(S) = (2, 83).

5. p-Frobenius of Nq -Gluing Affine Semigroups

From now on, consider S = 〈a1, . . . , ah〉 an affine semigroup, d ∈ N, γ =
(γ1, . . . , γq) ∈ N

q with d and gcd(γ1, . . . , γq) coprime, and such that S′ =
S ⊕d,γ N

q is an affine semigroup. In this section, we study the behavior of
Fp(S′) with respect to Fp(S).
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For numerical semigroups, that is q = 1, the relationship between F0(S′)
and F0(S) is the well known formula F0(S′) = dF0(S) + (d − 1)γ. Note that,
for p = 0 and q > 1, the 0-Frobenius vector is finite if and only if S is a
C-semigroup. Also note that for any S, C(S′) \ S′ is not finite. Therefore, we
assume that p ≥ 1.

Lemma 5.1. Let s′ = ds + aγ ∈ S′ with s ∈ S and 0 ≤ a ≤ d − 2. Then,
#Zs′(S′) = #Zs′+γ(S′).

Proof. Remember that S′ = 〈da1, . . . , dah, γ〉 and consider the injective map

ν : Zs′(S′) −→ Zs′+γ(S′)
(λ1, . . . , λh, λγ) �−→ (λ1, . . . , λh, λγ + 1).

To conclude, we prove that ν is surjective.
Take λ′ = (λ′

1, . . . , λ
′
h, λ′

γ) ∈ Zs′+γ(S′), that is

λ′
1da1 + · · · + λ′

hdah + λ′
γγ = s′ + γ = ds + (a + 1)γ.

This implies that (λ′
γγ − (a + 1)γ) ≡ 0 (mod d), and since gcd(γ1, . . . , γq)

and d are coprime, it must be λ′
γ ≡ a+1 (mod d). In turn, since λ′

γ ∈ N and
0 ≤ a ≤ d−2, we must have λ′

γ ≥ a+1 > 0. Thus, λ = (λ′
1, . . . , λ

′
h, λ′

γ −1) ∈
Zs′(S′), and clearly, ν(λ) = λ′. �

This allows us to give an upper bound for the p-Frobenius vector of S′

when p ≥ 1.

Proposition 5.2. Let S and S′ as defined before and let p ≥ 1. Then, Fp(S′) �
dFp(S) + (d − 1)γ.

Proof. We have that Fp(S′) ∈ S′, and thus, Fp(S′) = ds+aγ, for some s ∈ S
and a ∈ N. Since γ ∈ S, we can further assume that 0 ≤ a ≤ d − 1.

We claim that it must be Fp(S′) = ds + (d − 1)γ. Indeed, if Fp(S′) =
ds + aγ with a < d − 1, then, by Lemma 5.1, Fp(S′) + γ is also an element
of {n ∈ N | #Zn(S) ≤ p}, contradicting the �-maximality of Fp(S′).

Finally, we prove that s � Fp(S). By contradiction, if s � Fp(S), then
#Zs(S) ≥ p + 1, and #Zsd+(d−1)γ(S) ≥ p + 1. �

The following result shows a necessary and sufficient condition for equal-
ity to hold in Proposition 5.2 whenever Fp(S) is such that #ZFp(S)(S) = p.

Theorem 5.3. Assume that #ZFp(S)(S) = p. Then, Fp(S′) = dFp(S) + (d −
1)γ if and only if, for every b ∈ Zγ(S), there is no c ∈ ZFp(S)(S) such that
b ≤Nh c, where ≤Nh denotes the partial order given by bi ≤ ci for every
i ∈ [1, h].

Proof. Let s′ = dFp(S) + (d − 1)γ.
Assume there exist b ∈ Zγ(S) and c ∈ ZFp(S)(S) such that b ≤Nh c. We

show s′ �= Fp(S′) by proving #Zs′(S′) ≥ p + 1. Indeed, notice that every
λ ∈ ZFp(S)(S) gives an element (λ, d − 1) ∈ Zs′(S′). This implies #Zs′(S′) ≥
#ZFp(S)(S) = p. Moreover, one can check that (c − b, 2d − 1) ∈ Zs′(S′) gives
another element in the set.
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Conversely, let ZFp(S)(S) = {λ(1), . . . , λ(p)}. As just noticed, we have
that

L =
{(

λ(1), d − 1
)

, . . . ,
(
λ(p), d − 1

)}
⊆ Zs′(S′).

Assume by contradiction that Fp(S′) �= s′. Then, by Proposition 5.2, it must
be Fp(S′) ≺ s′. Thus, #Zs′(S′) ≥ p+1. Let μ = (μ1, . . . , μh, μγ) ∈ Zs′(S′)\L.
Since gcd(γ1, . . . , γq) and d are coprime, and

dFp(S) + (d − 1)γ = s′ = μ1da1 + · · · + μhdah + μγγ,

then μγ ≡ d−1 (mod d). If μγ = d−1, then (μ1, . . . , μh) ∈ ZFp(S)(S), which
cannot be since μ /∈ L. Thus, μγ = kd + (d − 1) for some k ≥ 1. Taking b =
(b1, . . . , bh) ∈ Zγ(S), we have (μ1 +kb1, . . . , μh +kbh, d−1) ∈ Zs′(S′). Hence,
(μ1 + kb1, . . . , μh + kbh) ∈ ZFp(S)(S), that is, (μ1 + kb1, . . . , μh + kbh) = c
for some c ∈ ZFp(S)(S). This implies that b ≤Nh c, which contradicts the
hypothesis. �
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[12] Garćıa-Garćıa, J.I., Moreno-Fŕıas, M.A., Vigneron-Tenorio, A.: Combinatorial
properties and characterization of glued semigroups. Abstract and Applied
Analysis 2014, 1–8 (2014)

[13] Gimenez, P., Srinivasan, H.: Gluing semigroups: when and how. Semigroup
Forum 101, 603–618 (2020)

[14] Herzog, J.: Generators and relations of abelian semigroups and semigroup rings.
Manuscripta Math. 3, 175–193 (1970)

[15] Komatsu, T., Ying, H.: The p-Frobenius and p-Sylvester numbers for Fibonacci
and Lucas triplets. Math. Biosci. Eng. 20(2), 3455–3481 (2023)

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


   90 Page 14 of 15 E. R. G. Barroso et al. MJOM

[16] Ojeda, I., Vigneron-Tenorio, A.: Indispensable binomials in semigroup ideals.
Proceedings of the American Mathematical Society 138, 4205–4216 (2010)

[17] Ojeda, I., Vigneron-Tenorio, A.: Simplicial complexes and minimal free resolu-
tion of monomial algebras. Journal of Pure and Applied Algebra 214, 850–861
(2010)
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Departamento de Matemáticas/INDESS (Instituto Universitario para el Desarrollo
Social Sostenible)
Universidad de Cádiz
E-11406 Jerez de la Frontera
Cádiz
Spain
e-mail: alberto.vigneron@uca.es

Received: November 10, 2023.

Revised: February 23, 2024.

Accepted: February 24, 2024.


	On p-Frobenius of Affine Semigroups
	Abstract
	Introduction
	1. Preliminaries
	2. Computing Fp(S) 
	3. Computing the 1-Frobenius Vector from Gröbner Basis of IS
	4. 2-Frobenius Vector and Indispensable Binomials
	5. p-Frobenius of mathbbNq-Gluing Affine Semigroups
	Acknowledgements
	References


