W-Methods and Approximate Matrix Factorization for Parabolic PDEs with Mixed Derivative Terms

  1. González-Pinto, Severiano 1
  2. Hernández-Abreu, Domingo 1
  1. 1 Universidad de La Laguna
    info

    Universidad de La Laguna

    San Cristobal de La Laguna, España

    ROR https://ror.org/01r9z8p25

Book:
Rosenbrock—Wanner–Type Methods

Publisher: Springer

ISSN: 2730-633X 2730-6348

ISBN: 9783030768096 9783030768102

Year of publication: 2021

Pages: 69-101

Type: Book chapter

DOI: 10.1007/978-3-030-76810-2_4 GOOGLE SCHOLAR lock_openOpen access editor

Sustainable development goals

Abstract

In this chapter W-methods are combined with the Approximate Matrix Factorization technique (AMF) in alternating direction implicit (ADI) sense for the time integration of parabolic partial differential equations with mixed derivatives in the elliptic operator, previously discretized in space by means of Finite Differences. Three different families of AMF-type W-methods are introduced and their unconditional stability is analized regardless of the spatial dimension. To this aim, a scalar test equation is presented and it is shown to be relevant for the class of problems under consideration when either periodic or homogeneous Dirichlet boundary conditions are imposed. Numerical results comparing the proposed AMF-type W-methods and some classical ADI schemes in the literature for 2 ≤ m ≤ 4 space dimensions are presented.

Bibliographic References

  • I.J.D. Craig, A.D. Sneyd, An alternating-direction implicit scheme for parabolic equations with mixed derivatives. Comput. Math. Appl. 16(4), 341–350 (1988)
  • J. Douglas, Jr., H.H. Rachford, Jr., On the numerical solution of heat conduction problems in two and three space variables. Trans. Am. Math. Soc. 82, 421–439 (1956)
  • B. Düring, M. Fournié, A. Rigal, High-order ADI schemes for convection-diffusion equations with mixed derivative terms, in Spectral and High Order Methods for Partial Differential Equations - ICOSAHOM’12, ed. by T. Gammarth, M. Azaïez, et al. Lecture Notes in Computational Science and Engineering, vol. 95 (Springer, Berlin, 2014), pp. 217–226
  • B. Düring, J. Miles, High-order ADI scheme for option pricing in stochastic volatility models. J. Comput. Appl. Math. 316, 109–121 (2017)
  • A. Gerisch, J.G. Verwer, Operator splitting and approximate factorization for taxis-diffusion-reaction models. Appl. Numer. Math. 42(1–3), 159–176 (2002). Ninth Seminar on Numerical Solution of Differential and Differential-Algebraic Equations (Halle, 2000)
  • S. González Pinto, D. Hernández Abreu, S. Pérez Rodríguez, Rosenbrock-type methods with inexact AMF for the time integration of advection diffusion reaction PDEs. J. Comput. Appl. Math. 262, 304–321 (2014)
  • S. González Pinto, D. Hernández Abreu, S. Pérez Rodríguez, R. Weiner, A family of three-stage third order AMF-W-methods for the time integration of advection diffusion reaction PDEs. Appl. Math. Comput. 274, 565–584 (2016)
  • S. González Pinto, D. Hernández Abreu, S. Pérez Rodríguez, W-methods to stabilize standard explicit Runge-Kutta methods in the time integration of advection-diffusion-reaction PDEs. J. Comput. Appl. Math. 316, 143–160 (2017)
  • S. González Pinto, E. Hairer, D. Hernández Abreu, S. Pérez Rodríguez, AMF-type W-methods for parabolic PDEs with mixed derivatives. SIAM J. Sci. Comput. 40(5), A2905–A2929 (2018)
  • S. González Pinto, E. Hairer, D. Hernández Abreu, S. Pérez Rodríguez, PDE-W-methods for parabolic problems with mixed derivatives. Numer. Algorithms 78, 957–981 (2018)
  • E. Hairer, G. Wanner, Solving Ordinary Differential Equations II. Stiff and Differential-Algebraic Problems. Springer Series in Computational Mathematics, vol. 14, 2nd edn. (Springer, Berlin, 1996)
  • E. Hairer, S.P. Norsett, G. Wanner, Solving Ordinary Differential Equations I. Non Stiff Problems. Springer Series in Computational Mathematics, vol. 8, 2nd rev. edn. (Springer, Berlin, 1993)
  • C. Hendricks, M. Ehrhardt, M. Günther, High-order ADI schemes for diffusion equations with mixed derivatives in the combination technique. Appl. Numer. Math. 101, 36–52 (2016)
  • C. Hendricks, C. Heuer, M. Ehrhardt, M. Günther, High-order ADI finite difference schemes for parabolic equations in the combination technique with application in finance. J. Comput. Appl. Math. 316, 175–194 (2017)
  • S.L. Heston, A closed form solution for options with stochastic volatility with applications to bonds and currency options. Rev. Financ. Stud. 6(2), 327–343 (1993)
  • W. Hundsdorfer, Accuracy and stability of splitting with stabilizing corrections. Appl. Numer. Math. 42(1–3), 213–233 (2002). Ninth Seminar on Numerical Solution of Differential and Differential-Algebraic Equations (Halle, 2000)
  • W. Hundsdorfer, J.G. Verwer, Numerical Solution of Time-Dependent Advection-Diffusion-Reaction Equations. Springer Series in Computational Mathematics, vol. 33 (Springer, Berlin, 2003)
  • K.J. in ’t Hout, S. Foulon, ADI finite difference schemes for option pricing in the Heston model with correlation. Int. J. Numer. Anal. Model. 7(2), 303–320 (2010)
  • K.J. in ’t Hout, B.D. Welfert, Unconditional stability of second-order ADI schemes applied to multi-dimensional diffusion equations with mixed derivative terms. Appl. Numer. Math. 59(3–4), 677–692 (2009)
  • K.J. in ’t Hout, M. Wyns, Convergence of the modified Craig-Sneyd scheme for two-dimensional convection-diffusion equations with mixed derivative term. J. Comput. Appl. Math. 296, 170–180 (2016)
  • T. Jax, G. Steinebach, Generalized ROW-type methods for solving semi-explicit DAEs of index-1. J. Comput. Appl. Math. 316, 213–228 (2017)
  • J. Lang, J.G. Verwer, W-methods in optimal control. Numer. Math. 124(2), 337–360 (2013)
  • D.W. Peaceman, H.H. Rachford, Jr., The numerical solution of parabolic and elliptic differential equations. J. Soc. Indust. Appl. Math. 3, 28–41 (1955)
  • A. Rahunanthan, D. Stanescu, High-order W-methods. J. Comput. Appl. Math. 233, 1798–1811 (2010)
  • J. Rang, L. Angermann, New Rosenbrock W-methods of order 3 for partial differential algebraic equations of index 1. BIT Numer. Math. 45(4), 761–787 (2005)
  • W. Schoutens, E. Simons, J. Tistaert, A perfect calibration! Now what? Wilmott Mag. 66–78 (2004)
  • T. Steihaug, A. Wolfbrandt, An attempt to avoid exact Jacobian and nonlinear equations in the numerical solution of stiff differential equations. Math. Comput. 33(146), 521–534 (1979)
  • P.J. van der Houwen, B.P. Sommeijer, Approximate factorization for time-dependent partial differential equations. J. Comput. Appl. Math. 128(1–2), 447–466 (2001). Numerical analysis 2000, Vol. VII, Partial differential equations
  • G. Winkler, T. Apel, U. Wystup, Valuation of options in Heston’s stochastic volatility model using finite element methods, in Foreign Exchange Risk, ed. by J. Hakala, U. Wystup (Risk Publ., London, 2002)