La transformación integral distribucional de Kontorovich - Lebedev y sus aplicaciones

  1. Yoel Emilio Gutiérrez Tovar
Dirigée par:
  1. José Manuel Méndez Pérez Directeur

Université de défendre: Universidad de La Laguna

Année de défendre: 2007

Jury:
  1. José Rodríguez Expósito President
  2. Jorge Juan Betancor Pérez Secrétaire
  3. Mario Pérez Riera Rapporteur
  4. José Luis Torrea Hernández Rapporteur
  5. Kishin B. Sadarangani Rapporteur
Département:
  1. Análisis Matemático

Type: Thèses

Résumé

En esta Memoria se investiga una variante de la transformación integral de Kontorovich - Lebedev en cuyo núcleo comparece la función de Hankel de segunda clase, tanto desde un punto de vista clásico como en ciertos espacios de funciones generalizadas, así como sus aplicaciones a la resolución de diferentes problemas de la Física - Matemática, A estas transformaciones las llamaremos transformaciones de Hankel - Kontorovich -Lebedev o, a lo largo de la tesis y en aras de la brevedad, transformaciones H-K-L.. El contenido de esta Memoria lo hemos dividido en cuatro capítulos. En el Capítulo 1 se obtienen los principales resultados clásicos relacionados con las transformaciones H-K-L, a saber, la fórmula de inversión y una relación de Parseval. Finalizamos este capítulo mostrando, después de obtener las pertinentes reglas operacionales, que estas transformaciones integrales resultan útiles en la resolución de ciertas clases de ecuaciones en diferencias finitas con coeficientes variables. En el Capítulo 2, utilizando el método del núcleo, se investiga la transformación H-K-l en el espacio de las distribuciones de soporte compacto. Después de estudiar algunas de sus propiedades, entre ellas, la analiticidad y la acotación de la función imagen, se prueba el resultado capital del capítulo, a saber, la fórmula de inversión. En el Capítulo 3 se introducen nuevos espacios de funciones pruebas y sus duales, realizándose un exhaustivo estudio de sus principales propiedades, lo cual concluirá con el establecimiento de que se trata de espacios de Fréchet y de que la función de Hankel de segunda clase, que aparece en el núcleo, y sus derivadas pertenecen a dichos espacios. Despues se define la transformación H-K-L en su espacio dual, espacio de distribuciones o funciones generalizadas, mediante el método del núcleo y se establecen los cuatro resultados fundamentales: La analiticidad de la función imagen, la acotación de la misma,