Aplicaciones de la teoría de Morse y de la cirugía al estudio de hipersuperficies y variedades de dimensión baja

  1. Pedro María González Manchón
Supervised by:
  1. Enrique Outerelo Domínguez Director

Defence university: Universidad Complutense de Madrid

Year of defence: 1996

Committee:
  1. Jesús María Ruiz Sancho Chair
  2. José María Sánchez Abril Secretary
  3. Juan Margalef Roig Committee member
  4. María Teresa Lozano Imízcoz Committee member
  5. María Edith Padrón Fernández Committee member

Type: Thesis

Abstract

La presente memoria utiliza la teoría de morse y la asociación de asas para el estudio de hipersuperficies y 3-variedades. Entre sus contenidos señalaremos aquí la noción nueva de subvariedad, que se introduce en el contexto de variedades con borde anguloso. Dicha noción es bien acorde con la teoría de funciones de variedad y se adapta mas agradablemente que otras a la transversalidad. Por lo que se refiere a hipersuperficies destaca un estudio cuidadoso y fructífero de los puntos críticos de una función que son "exteriores" a su lugar de ceros, con diversas aplicaciones llamativas a la esfera y el toro. Por ultimo se busca un procedimiento algoritmico que permita la comparación y simplificación de enlaces reverenciados, aportando una solución para pasar de una cadena cerrada simple a un enlace de lickorish, de tipo canónico