Efectos de la exposición prenatal a cocaína en la conducta emocional en ratones

  1. Santacruz Ortega, María del Pilar 1
  2. Marrero Quevedo, Rosario J. 2
  3. Bethencourth Pérez, Juan Manuel 2
  4. Castellano Gil, Miguel Ángel 2
  5. Peñate Castro, Wenceslao 2
  1. 1 Universidad Católica de Colombia
    info

    Universidad Católica de Colombia

    Bogotá, Colombia

    ROR https://ror.org/01scwqh06

  2. 2 Universidad de La Laguna
    info

    Universidad de La Laguna

    San Cristobal de La Laguna, España

    ROR https://ror.org/01r9z8p25

Revista:
Diversitas: perspectivas en psicología

ISSN: 1794-9998

Año de publicación: 2016

Volumen: 12

Número: 2

Páginas: 275-293

Tipo: Artículo

Otras publicaciones en: Diversitas: perspectivas en psicología

Resumen

El objetivo de este estudio fue analizar los efectos de la Exposición Prenatal a Cocaína (EPC) (0,25 o 50 mg/kg/día) en la conducta emocional de ratones hembras y machos en la adolescencia y la adultez temprana. Se asignaron 27 ratones CD1 hembras gestantes a 3 condiciones experimentales: un grupo control que se le administró solución salina y 2 experimentales a los que se le administró cocaína 25 mg/ kg/día y 50 mg/kg/día, desde el día octavo al veintiunavo de gestación. La conducta emocional de los hijos de estas madres se evaluó en la adolescencia y en la adultez temprana (5.ª y 7.ª semana de edad, respetivamente) por medio del tablero de agujeros y el laberinto en cruz a través de diferentes índices de actividad exploratoria. Los datos se analizaron por medio de MANOVAS y ANOVAS con un valor α de 0.05. La EPC alteró de forma dosis-relacionada la conducta emocional; los sujetos sometidos a EPC 50 mg/kg/día exhibieron mayor ansiedad y temor, en cambio los tratados con EPC 25 mg/kg/día exploraron más, mostrando conductas de alto riesgo, características de la impulsividad e hiperactividad. Los efectos encontrados se mantuvieron en el tiempo, por lo que se concluye que la EPC perturbó permanente y significativamente la emoción.

Referencias bibliográficas

  • Ackerman, J. P., Riggins, T. & Black, M. M. (2010). A review of the effects of prenatal cocaine exposure among school-aged children. Pediatrics, 125, 554-565. doi: 10.1542/peds.2009-0637.
  • Bailey, K. R. & Crawley, J. N. (2009). Anxiety-related behaviors in mice. In J. J. Buccafusco (ed.). Methods of behavior analysis in neuroscience, (2). Boca Raton (Florida): CRC Press. Retrieved from http://www.ncbi.nlm.nih.gov/books/NBK5221/
  • Brown, G. R. & N emes, C . ( 2008). T he e xploratory behaviour of rats in the hole-board apparatus: is head-dipping a valid measure of neophilia? Behavior Processes, 78, 442-448. doi:10.1016/j.beproc.2008.02.019.
  • Brunton, P. J. (2015). Programming the brain and behaviour by early life stress: A focus on neuroactive steroids. Journal of Neuroendocrinology. doi:10.1111/jne.12265. Retrieved from http://onlinelibrary.wiley.com/doi/10.1111/jne.12265/pdf
  • Butler, T. R., Ariwodola, O. J. & Weiner, J. L. (2014). The impact of social isolation on HPA axis function, anxiety-like behaviors and ethanol drinking. Frontiers in Integrative Neuroscience, 2, 1-11. doi:10.3389/fnint.2013.00102.
  • Crawley, J. N. (2009). Chaplin, T. M., Freiburger, M. B., Mayes, L. C. & Sinha, R. (2010). Prenatal cocaine exposure gender and adolescent stress response: A prospective longitudinal study. Neurotoxicology Teratology, 32, 595- 604. doi:10.1016/j.ntt.2010.08.007.
  • Chaplin, T. M, Visconti K. J., Molfese, P. J., Susman, E. J., Klein, L. C., Sinha, R. & Mayes, L. C. (2014). Prenatal cocaine exposure differentially affects stress responses in girls and boys: Associations with future substance use. Development and Psychopathology, 18, 1-8. doi:10.1017/S0954579414000716.
  • Chrousos, G. P. & K ino, T . ( 2009). G lucocorticoid signaling in the cell. Expanding clinical implications to complex human behavioral and somatic disorders glucocorticoids and mood. Annals of the New York Academy of Sciences, 1179, 153-166. doi:10.1111/j.1749- 6632.2009.04988.
  • Costa-Goes, T., Dias-Antunes,F. & Teixeira-Silva, F. (2009). Trait and state anxiety in animal models: Is there correlation? Neuroscience Letters, 450, 26-269. doi:10.1016/j.neulet.2008.11.037.
  • Crawley, J. N. (1985). Exploratory behavior models of anxiety in mice. Neuroscience and Biobehavioral Reviews, 9, 37-44. doi:10.1016/0149- 7634(85)90030-2.
  • Dow-Edwards, D., Iijima, M., Stephenson, S., Jackson, A. & Weedon, J. (2014). The effects of prenatal cocaine, post-weaning housing and sex on conditioned place preference in adolescent rats. Psychopharmacology, 231, 1543- 1555. doi: 10.1007/s00213-013-3418-9.
  • Eiden, R. D., Schuetze, P. & Coles, C. D. (2011). Maternal cocaine use and mother-infant interactions: direct and moderated associations. Neurotoxicology and Teratology, 33, 120-128. doi:10.1016/j.ntt.2010.08.005.
  • Eyler, F. D., Warner, T. D., Behnke, M., Hou, W., Wobie, K. & G arvan, C . W. ( 2009). E xecutive functioning at ages 5 and 7 years in children with prenatal cocaine exposure. Devopmental Neuroscience, 31, 121-136. doi:10.1159/000207500.
  • Finger, B., Schuetze, P. & Eiden, R. (2015). Behavior problems among cocaine-exposed children: Role of physiological regulation and parenting. Drug & Alcohol Dependence, 146, 278. doi:10.1016/j.ntt.2014.01.001.
  • Golbach, T. (2005). The effects of prenatal cocaine exposure on the mutual regulation of attention in mother-infant dyads. Georgia State University. ProQuest issertations and Theses, 106. Retrieved from http://scholarworks.gsu.edu/psych_diss/5
  • Hansen-Trench, L. S. & Barron, S. (2005). Effects of neonatal alcohol and/or cocaine exposure on stress in juvenile and adult female rats. Neurotoxicology and Teratology, 27, 55–63. doi:10.1016/j.ntt.2004.10.001.
  • Huber, J., Darling S., Park, K. & Soliman, K.F. (2001). Altered responsiveness to stress and NMDA following prenatal exposure to cocaine. Physiology & Behavior, 72, 181-188. doi:10.1016/s0031-9384(00)00410-8.
  • Hughes, R. N. (2007). Neotic preferences in laboratory rodents: issues, assessment and substrates. Neuroscience Biobehavior Review, 31, 441-464. doi:10.1016/j.neubiorev.2006.11.004.
  • Konsolaki, E. & Skaliora, I. (2015). Motor vs. cognitive elements of apparent “hyperlocomotion”: A conceptual and experimental clarification. Proceedings of the National Academy of Sciences, 112, E 3-E4. doi:10.1073/pnas.1413820112.
  • Korte, M. & de Boerd, S. (2003). A robust animal model of state anxiety: fear-potentiated behavior in the elevated plus-maze. European Journal of Pharmacology, 463, 163-75. doi:10.1016/S0014-2999 (03)01279-2.
  • Laarakker, M. C., Ohl, F. & Van Lith, H. A. (2008). Chromosomal assignment of quantitative trait loci influencing modified hole board behavior in laboratory mice using consomic strains, with special reference to anxiety-related behavior and mouse chromosome 19. Behavior Genetics, 38, 159-184. doi:10.1007/s10519-007-9188-6.
  • Lambert, B. L. & Bauer, C . R . ( 2012). Developmental and behavioral consequences of prenatal cocaine exposure: A review. Journal of Perinatology, 32, 819–828. doi:10.1038/jp.2012.90.
  • Lester, B. M. & Padbury, J. F. (2009). Third pathophysiology of prenatal cocaine exposure. Developmental Neuroscience, 31, 23-35. doi:10.1159/000207491.
  • Lewis, M. W. (2015). Cocaine-exposed toddler caregiver dyads during free play at 24 months. In Society for social work and research 19th annual conference: The social and behavioral importance of increased longevity. Sswr.
  • Li, Z., Coles, C. D., Lynch, M. E., Hamann, S., Peltier, S., LaConte, S. & Hu, X. (2009). Prenatal
  • cocaine exposure alters emotional arousal regulation and its effects on working memory. Neurotoxicology and Teratology, 31, 342-348. doi:10.1016/j.ntt.2009.08.005.
  • Linares, T. J., Singer, L. T., Kirchner, H. L., Short, E. J., Min, M. Y., Hussey, P. & Minnes, S. (2006). Mental health outcomes of cocaine exposed children at 6 years of age. Journal of Pediatric Psychology, 31, 85-97. doi:10.1093/jpepsy/jsj020.
  • Loredo-Abdala, A. Casas-Muñoz, A. y Monroy-Llaguno, D. A. (2014). La cocaína: sus efectos en la mujer embarazada y en el producto de la gestación. Revista de la Facultad de Medicina de la UNAM, 57, 5-8.
  • Lynch, W. J., Roth, M. E. & Carroll, M. E. (2002). Biological basis of sex differences in drug abuse: Preclinical and clinical studies. Psychopharmacology, 164, 121-137. doi: 10.1007/s00213-002-1183-2.
  • Magalhães, A., Summavielle, T., Melo, P., Tavares, M. A. & Sousa, L. D. (2005). Prenatal cocaine exposure: effects on locomotor activity in rat offspring. Environmental Toxicology and Pharmacology, 19, 767-773. doi:doi.org/10.1016/j.etap.2004.12.043.
  • Mechan, A. O., Moran, P. M., Elliott, M. J., Walf, F. Young, A. M., Joseph, M. H., Green, R. A. & Frye, D. (2007). A study of the effect of a single neurotoxic dose of 3, 4-methylene dioxymethamphetamine (MDMA; “ecstasy”) on the subsequent long-term behaviour of rats in the plus maze and open field. Psychopharmacology, 159, 167-75. doi:10.1007/s002130100900.
  • Mechan, A. O., Moran, P. M., Elliott, M. J., Young, A. M., Joseph, M. H. & Green, R. A. (2002). A comparison between dark agouti and sprague- dawley rats in their behaviour on the elevated plus maze, open-field apparatus and activity meters, and their response to diazepam. Psychopharmacology, 159, 188-95. doi:10.1007/s002130100902.
  • Morrow, C. E., Accornero, V. H., Xue, L., Manjunath, S., Culbertson, J. L., Anthony, J. C. & Bandstra, E. S. (2009). Estimated risk of developing selected DSM-IV disorders among 5-year-old children with prenatal cocaine exposure. Journal of Child and Family Studies, 18(3), 356-364. doi:10.1007/s10826-008-9238-6.
  • Nnadi, C. U., Mimiko, O. A., McCurtis, H. L. & Cadet, J. L. (2005). Neuropsychiatric effects of cocaine use disorders. Journal of the National Medical Association, 97, 1504-1515.
  • Overstreet, D. H., Moy, S. S., Lubin, D. A., Gause, L. R., Lieberman, J. A. & Johns, J. M. (2000). Enduring effects of prenatal cocaine administration on emotional behavior in rats. Physiology & Behavior, 70, 149-156. doi:10.1016/s0031-9384(00)00245-6.
  • Peña-Oliver, Y. (2007). El enriquecimiento ambiental en ratas: efectos diferenciales en función del sexo. Tesis doctoral. España: Universidad de Barcelona. Departamento de Biología Celular. Recuperado de http://ddd.uab.cat/pub/tesis/2007/tdx-1031107-64745/ypo1de1.pdf
  • Salas-Ramírez, K. Y., Frankfurt, M., Alexander, A., Luine, V. N. & Friedman, E. (2010). Prenatal cocaine exposure increases anxiety, impairs Cognitive function and increases dendritic spine density in adult rats: influence of sex. Neuroscience, 169, 1287-1295. doi:10.1016/j.neuroscience.2010.04.067.
  • Salomons, A., Van Luijk, J., Reinders, N., Kirchhoff, S., Arndt, S. & Oh, F. (2010). Identifying emotional adaptation: behavioural habituation to novelty and immediate early gene expression in two inbred mouse strains. Genes, Brain and Behavior, 9, 1-10. doi:10.1111/j.1601-183X.2009.00527.x.
  • Simpson, J. (2011). The influence of housing, sex and strain on baseline and drug-induced behavioural and neurochemical parameters in the rat. Doctoral thesis. Galway, Ireland: School of Medicine, Department of Pharmacology and Therapeutics, National University of Ireland. Retrieved from http://aran.library.nuigalway.ie/xmlui/bitstream/handle/10379/3876/thesis%20resubmission_new%20appendix%20OCT%202013-1.pdf?sequence=5
  • Singer, L. T., Minnes, S., Short, E., Arendt, R., Farkas, K., Lewis, B., Klein, N., Russ, S. & Min, M. (2004). Cognitive outcomes of preschool children with prenatal cocaine exposure. The JAMA Network, 291, 2448-2456. doi:10.1001/jama.291.20.2448.
  • Sinha, R. (2008). Chronic stress, drug use and vulnerability to addiction. Annals of the New York Academy of Sciences, 1141, 105-130. doi:10.1196/annals.1441.030.
  • Sithisarn, T., Bada, H. S., Dai, H., Randall, D. C. & Legan, S. J. (2011). Effects of perinatal cocaine exposure on open field behavior and the response to corticotropin releasing hormone (CRH) in rat offspring. Brain Research, 1370, 136-144. doi:10.1016/j.brainres.2010.11.024.
  • Sobrian, S. K., Johnston, M., Wright, J., Kuhn, D. & Ameis, K . (2008). Prenatal nicotine or cocaine differentially alters nicotine-induced sensitization in aging offspring. Annals New York Academy of Sciences, 1139, 466-77. doi:10.1196/annals.1432.045.
  • Sobrian, S. K., Marr, L. & Ressman, K. (2003). Prenatal cocaine or nicotine exposure produces depression and anxiety in aging rats. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 27, 501-18. doi:10.1016/S0278-5846(03)00042-3.
  • Thompson, B. L., Levitt, P. & Stanwood, G. (2005). Prenatal cocaine exposure specifically alters spontaneous alternation behavior. Behavioural Brain Research, 164, 107-116. doi:10.1016/j.bbr.2005.06.010.
  • UNODC. (2005). United Nations office on drugs and crime global; Illicit drug trends. Retrieved from https://www.unodc.org/unodc/en/data-and-analysis/WDR-2005.html
  • Walf, A. & Frye, Ch. (2007). The use of the elevated plus maze as an assay of anxiety-related behavior in rodents. Nature Protocols, 2, 322- 328. doi:10.1038/nprot.2007.44.