Estudio exploratorio de las emociones en la cotidianidad de las clases de Matemáticas

  1. Josefa Perdomo Díaz 1
  2. Andrés Fernández Vizcarra 1
  1. 1 Universidad de Chile

    Universidad de Chile

    Santiago de Chile, Chile


REDIE: Revista Electrónica de Investigación Educativa

ISSN: 1607-4041

Year of publication: 2018

Volume: 20

Issue: 4

Pages: 133-139

Type: Article

DOI: 10.24320/REDIE.2018.20.4.1748 DIALNET GOOGLE SCHOLAR lock_openDialnet editor

More publications in: REDIE: Revista Electrónica de Investigación Educativa


This paper presents an exploratory study that seeks to analyze the emotional map of a group of 4th -grade elementary students from Chile during activities in the unit “Measurement: units of length, perimeter and area”, study gender differences, and explore the existence of emotional patterns. The study uses a situated perspective that considers emotions to be part of local affects, short-lived and linked to specific conditions. The methods employed are a frequency analysis, a  2 test, a non-parametric Kruskal-Wallis test, and a cluster analysis. Globally, the map shows 45% positive emotions and 18.3% negative emotions. Men exhibit a higher average of blank responses than women, and appear less concerned. Lastly, clustering made it possible to define five emotional patterns.

Bibliographic References

  • Atlas, R., y Overall, J. (1994). Comparative evaluation of two superior stopping rules for hierarchical cluster analysis. Psychometrika, 59(4), 581-591.
  • Buehl, M. M. y Alexander, P. A. (2005). Motivation and performance differences in students’ domain-specific epistemological belief profiles. American Educational Research Journal, 42(4), 697-726.
  • DeBellis, V. A. y Goldin, G. A. (2006). Affect and meta-affect in mathematical problem solving: a representational perspective. Educational Studies in Mathematics, 63, 131-147.
  • Frenzel, A. C., Pekrun, R. y Goetz, T. (2007a). Girls and mathematics – A “hopeless” issue? A control-value approach to gender differences in emotions towards mathematics. European Journal of Psychology of Education, XXII(4), 497-514.
  • Frenzel, A. C., Pekrun, R. y Goetz, T. (2007b). Perceived learning environment and students’ emotional experiences: A multilevel analysis of mathematics classrooms. Learning and Instruction, 17, 478-493.
  • Goetz, T., Frenzel, A. C., Hall, N. C. y Pekrun, R. (2008). Antecedents of academic emotions: Testing the internal/external frame of reference model for academic enjoyment. Contemporary Educational Psychology, 33, 9-33.
  • Goldin, G. A. (2000). Affective pathways and representation in mathematical problem solving. Mathematical Thinking and Learning, 2(3), 209-219.
  • Hamming, R. (1950). Error detecting and error correcting codes. Bell System Technical Journal, 29(2), 147-160.
  • Hannula, M. (2012). Exploring new dimensions of mathematics-related affect: embodied and social theories. Research in Mathematics Education, 14(2), 137-161.
  • Hannula, M. S., Pantziara, M., Waege, K. y Scholöglmann, W. (2010). Introduction multimethod approaches to the multidimensional affect in mathematics education. En V. Durand-Guerrier, S. Soury-Lavergne, y F. Arzarello (Eds.), Proceedings of the Sixth Congress of the European Society for Research in Mathematics Education, 28-33. Lyon: Service des publications.
  • Holm, M. E., Hannula, M. S. y Björn, P. M. (2016). Mathematics-related emotions among Finish adolescents across different performance levels. Educational Psychology, 37, (2). doi:10.1080/01443410.2016.1152354
  • Ibáñez, N. (2002). Las emociones en el aula. Estudios Pedagógicos, 28, 31-45.
  • McLeod, D. B. (1992). Research on affect in mathematics education: a reconceptualization. En D. A. Grouws (Ed.). Handbook of research on mathematics teaching and learning. A project of the national council of teachers of mathematics, 23, 575-596. Nueva York: MacMillan.
  • Mandler, G. (1989). Affect and learning: Causes and Consequences of Emotional Interactions. En D. B. McLeod y V. M. Adams (Eds.), Affect and mathematical problem solving: a new perspective (3-19). Nueva York: Springer-Verlag.
  • Martínez-Sierra, G. y García, M. S. (2014). High school students’ emotional experiences in mathematics classes. Research in Mathematics Education, 16(3), 234-250. doi:10.1080/14794802.2014.895676
  • Op’t Eynde, P., De Corte, E. y Verschaffel, L. (2006). Accepting emotional complexity: A socio-constructivist perspective on the role of emotions in the mathematics classroom. Educational Studies in Mathematics, 63, 193-207.
  • Pekrun, R. (2005). Progress and open problems in educational emotion research. Learning and Instruction, 15, 497-506.
  • Pekrun, R., Goetz, T., Frenzel, A. C., Barchfeld, P. y Perry, R. P. (2011). Measuring emotions in students’ learning and performance: The Achievement Emotions Questionnaire (AEQ). Contemporary Educational Psychology, 36, 36-48.
  • Pekrun, R., Goetz, T., Titz, W. y Perry, R. P. (2002). Academic emotions in students’ self-regulated learning and achievement: A program of qualitative and quantitative research. Educational Psychologist, 37, 91-106.
  • Schoenfeld, A. (1998). Toward a theory of teaching-in-context. Issues in Education, 4(1), 1-94.
  • Volet, S. y Järvelä, S. (Eds.). (2001). Motivation in learning contexts: Theoretical advances and methodological implications. Reino Unido: Elsevier.