Welcome to migrants in a borderless Europebryophytes show the way to go

  1. Alain Vanderpoorten 1
  2. Alice Ledent 2
  3. Jairo Patiño 3
  1. 1 University of Liège, Institute of Botany, Liège, Belgium
  2. 2 Plant Conservation and Biogeography Group, Departamento de Botánica, Ecología y Fisiología Vegetal, Facultad de Ciencias, Universidad de La Laguna, La Laguna, Islas Canarias, Spain
  3. 3 Departamento de Botánica, Ecología y Fisiología Vegetal, Facultad de Ciencias, Universidad de La Laguna, La Laguna, Islas Canarias, (España)
Journal:
Scientia Insularum: Revista de Ciencias Naturales en islas

ISSN: 2659-6644

Year of publication: 2020

Issue: 3

Pages: 117-132

Type: Article

DOI: 10.25145/J.SI.2020.03.07 DIALNET GOOGLE SCHOLAR lock_openRIULL editor

More publications in: Scientia Insularum: Revista de Ciencias Naturales en islas

Abstract

Reconstructing the Quaternary history of European bryophytes has long been challenging because, except for macro-remains preserved in peat, the fossil record is extremely poor as compared to vascular plants. Coalescent simulations revealed that the postglacial assembly of European bryophytes involves a complex history from multiple sources, contrasting with the prevailing model of northwards species migration from Mediterranean refugia. A scenario of extra-European postglacial recolonization clearly emerged as dominant. A bulk of the bryoflora that pre-existed in Europe before the Ice Age was reinforced by allochthonous migrants. The Atlantic European fringe was, in contrast, de novo colonized by species primarily distributed across tropical areas. We hypothesize that, for the particular case of the oceanic bryophyte floristic element, the Macaronesian islands represented a mandatory stepping-stone situated midway between the tropics and Europe due to the necessity for tropical species to pre-adapt under insular warm-temperate conditions before they successfully establish in temperate regions.

Bibliographic References

  • Alsos, I.G., Eidesen, P.B., Ehrich, D., Skrede, I., Westergaard, K., Jacobsen, G.H., Landvik, J.Y., Taberlet, P and Brochmann, C. 2007. Frequent long-distance plant colonization in the changing Arctic. Science 316: 1606-1609.
  • Avise, J.C., Arnold, J., Ball, R.M., Bermingham, E., Lamb, T., Neigel, J.E., Reeb, C.A. and Saunders, N.C. 1987. Intraspecific phylogeography: the mitochondrial DNA bridge between population genetics and systematics. Annu. Rev. Ecol. Evol. Syst. 18: 489-522.
  • Bellemain, E, and Ricklefs, R.E. 2008. Are islands the end of the colonisation road? Trends Ecol. Evol. 23: 461-468.
  • Bhagwat, S.A. and Willis, K.J. 2008. Species persistence in northerly glacial refugia of Europe: a matter of chance or biogeographical traits? J. Biogeogr. 35: 464-482.
  • Berger, A., Mesinger, F. and Sijacki, D. 2012. A brief history of the astronomical theories of paleoclimates. In: Berger, A., Mesinger, F. and Sijacki, D. (eds.) Climate Change. Vienna: Springer pp. 107-129.
  • Clark, P.U., Dyke, A.S., Shakun, J.D., Carlson, A.E., Clark, J., Wohlfarth, B., Mitrovica, J.X., Hostetler, S.W. and Mccabe, A.M. 2009. The Last Glacial Maximum. Science 325: 710-714.
  • Cox, C.J., Goffinet, B., Wickett, N.J., Boles, S.B. and Shaw, A.J. 2010. Moss diversity: a molecular phylogenetic analysis of genera. Phylotaxa 9: 175-195.
  • Cronberg, N. 2000. Genotypic diversity of the epiphytic bryophyte Leucodon sciudoides in formerly glaciated versus nonglaciated parts of Europe. Heredity 84: 710-720.
  • Devos, N. and Vanderpoorten, A. 2009. Range disjunctions, speciation, and morphological transformation rates in the liverwort genus Leptoscyphus. Evolution 63: 779-792.
  • Douda, J., Doudová, J., Drašnarová, A., Kuneš, P., Hadincová, V., Krak, K., Zákravský, P. and Mandák, B. 2014. Migration patterns of subgenus Alnus in Europe since the Last Glacial Maximum: A systematic review. PLoS ONE 9: e88709.
  • Feldberg, K., Lindner, M., Wilson, R., Hartmann, F.A., Schmull, M., Gradstein, S.R. and Heinrichs, J. 2013. Biogeography of Plagiochila (Hepaticae): natural species groups span several floristic kingdoms. J. Biogeogr. 30: 965-978.
  • Fernández‐Palacios, J.M., Rijsdijk, K.F., Norder, S.J., Otto, R., De Nascimento, L., Fernández‐ Lugo, S., Tjørve, E. and Whittaker, R.J. 2016. Towards a glacial‐sensitive model of island biogeography. Global Ecol. Biogeogr. 25: 817-830.
  • Gallego, M.T., Cano, M.J. and Sérgio, C. 2005. Syntrichia bogotensis (Bryopsida, Pottiaceae) new for Macaronesia. Bryologist 108: 219-223.
  • García‐Verdugo, C., Sajeva, M., La Mantia, T., Harrouni, C., Msanda, F. and Caujapé‐Castells, J. 2015. Do island plant populations really have lower genetic variation than mainland populations? Effects of selection and distribution range on genetic diversity estimates. Mol. Ecol. 24: 726-741.
  • Grundmann. M., Ansell, S.W., Russell, S.J., Koch, M.A. and Vogel, J.C. 2008. Hotspots of diversity in a clonal world –the Mediterranean moss Pleurochaete squarrosa in Central Europe. Mol. Ecol. 17: 825-838.
  • He, X., He, K.S. and Hyvönen, J. 2016. Will bryophytes survive in a warming world? Persp. Plant Ecol. Evol. Syst. 19: 49-60.
  • Hein, J., Schierup, M. and Wiuf, C. 2004. Gene Genealogies, Variation and Evolution: A primer in coalescent theory. Oxford: Oxford University Press 296 pp.
  • Heinrichs, J., Dong, S., Schäfer-Verwimp, A., Pócs, T., Feldberg, K., Czumaj, A., Schmidt, A.R., Reitner, J., Renner, M.A.M., Hentschel, J., Stech, M. and Schneider, H. 2013. Molecular phylogeny of the leafy liverwort Lejeunea (Porellales): Evidence for a neotropical origin, uneven distribution of sexual systems and insufficient taxonomy. PLoS ONE 8: e82547.
  • Hewitt, G.M. 1996. Some genetic consequences of ice ages, and their role in divergence and speciation. Biol. J. Linn. Soc. 58: 247-276.
  • Hewitt, G.M. 1999. Post-glacial re-colonization of European biota. Biol. J. Linn. Soc. 68: 87-112.
  • Hewitt, G.M. 2000. The genetic legacy of the Quaternary ice ages. Nature 405: 907-913.
  • Hewitt, G.M. 2004. Genetic consequences of climatic oscillations in the Quaternary. Phil. Trans. Roy. Soc. London B 359: 183-195.
  • Hudson, R.R. 1991. Gene genealogies and the coalescent process. In: Futuyma, D. and Antonovics, J. (eds.), Oxford Surveys in Evolutionary Biology. Oxford: Oxford University Press pp. 1-44.
  • Hutsemékers, V., Szövényi, P., Shaw, A.J., González-Mancebo, J.M., Muñoz, J. and Vanderpoorten, A. 2011. Oceanic islands are sources not sinks of biodiversity in spore-producing plants. Proc. Natl. Acad. Sci. USA 108: 18989-18994.
  • Kingman, J.F.C. 1982. The coalescent. Stoch. Proces. Appl. 13: 235-248.
  • Knowles, L.L. and Maddison, W.P. 2002. Statistical phylogeography. Mol. Ecol. 11: 2623-2635.
  • Kyrkjeeide, M.O., Stenøien, H.K., Flatberg, K.I. and Hassel, K. 2014. Glacial refugia and post-glacial colonization patterns in European bryophytes. Lindbergia 2: 47-59.
  • Laenen, B., Désamoré, A., Devos, N., Shaw, A.J., González‐Mancebo, J.M., Carine, M.A. and Vanderpoorten, A. 2011. Macaronesia: a source of hidden genetic diversity for postglacial recolonization of western Europe in the leafy liverwort Radula lindenbergiana. J. Biogeogr. 38: 631-639.
  • La Farge, C., Williams, K.H. and England, J.H. 2013. Regeneration of Little Ice Age bryophytes emerging from a polar glacier with implications of totipotency in extreme environments. Proc. Natl. Acad. Sci. USA, 110: 9839-9844.
  • Ledent, A., Désamoré, A., Laenen, B., Mardulyn, P., Mcdaniel, S.F., Zanatta, F., Patiño, J. and Vanderpoorten, A. 2019. No borders during the post-glacial assembly of European bryophytes. Ecol. Lett., 22: 973-986.
  • Lumibao, C.Y., Hoban, S.M. and Mclachlan, J. 2017. Ice ages leave genetic diversity ‘hotspots’ in Europe but not in Eastern North America. Ecol. Lett. 20: 1459-1468.
  • Marjoram, P. and Joyce, P. 2011. Practical Implications of Coalescent Theory. In: Heath, L.S. and Ramakrishnan, N. (eds.), Problem Solving Handbook in Computational Biology and Bioinformatics. Boston, MA: Springer US. pp. 63-80.
  • Médail, F. and Diadema, K. 2009. Glacial refugia influence plant diversity patterns in the Mediterranean Basin. J. Biogeogr. 36: 1333-1345.
  • Nordborg, M. 2001. Coalescent Theory. In: Balding, D.J., Bishop, M. and Cannings, C. (eds.), Handbook of Statistical Genetics. John Wiley & Sons pp. 843-877.
  • Patiño, J. and Vanderpoorten, A. 2018. Bryophyte biogeography. Critic. Rev. Plant Sci. 37: 175-209.
  • Patiño, J., Carine, M., Mardulyn, P., Devos, N., Mateo, R.G., González-Mancebo, J.M., Shaw, A.J. and Vanderpoorten, A. 2015. Approximate Bayesian Computation reveals the crucial role of oceanic islands for the assembly of continental biodiversity. Syst. Biol. 64: 579-589.
  • Petit, R.J., Brewer, S., Bordacs, S., Burg, K., Cheddadi, R., Coart, E., Cottrell, J., Csaikl, U.M., Van Dam, B., Deans, J.D., Espinel, S., Fineschi, S., Finkeldey, R., Glaz, I., Goicoechea, P.G., Jensen, J.S., Konig, A.O., Lowe, A.J., Madsen, S.F., Matyas, G., Munro, R.C., Popescu, F., Slade, D., Tabbener, H., De Vries, S.G.M., Ziegenhagen, B., De Beaulieu, J.L. and Kremer, A. 2002. Identification of refugia and post-glacial colonisation routes of European white oaks based on chloroplast DNA and fossil pollen evidence. For. Ecol. Manag. 156: 49-74.
  • Petit, R., Aguinagalde, I., De Beaulieu, J.L., Bittkau, C., Brewer, S., Cheddadi, R., Ennos, R., Fineschi, S., Grivet, D., Lascoux, M., Mohanty, A., Müller-Starck, G., Demesure- Musch, B., Palmé, A., Martín, J.P., Rendell, S. and Vendramin, G.G. 2003.
  • Glacial refugia: hotspots but not melting pots of genetic diversity. Science 300: 1563-1565. Pillans, B. and Gibbard, P. 2012. The Quaternary Period. In: Gradstein, F.M., Ogg, J.G., Schmitz, M. and Ogg, G. The Geologic Time Scale. Elsevier pp. 979-1010.
  • Preston, C.D. and Hill, M.O. 1999. The geographical relationships of the British and Irish flora: a comparison of pteridophytes, flowering plants, liverworts and mosses. J. Biogeogr. 26: 629-642.
  • Roads, E., Longton, R.E. and Convey, P. 2014. Millennial timescale regeneration in a moss from Antarctica. Current Biology 24: R222-R223.
  • Schneider, R., Schmitt, J., Köhler, P., Joos, F. and Fischer, H. 2013. A reconstruction of atmospheric carbon dioxide and its stable carbon isotopic composition from the penultimate glacial maximum to the last glacial inception. Climate of the Past 9: 2507-2523.
  • Stenøien, H.K., Shaw, A.J., Shaw, B., Hassel, K. and Gunnarsson. U. 2011. North American origin and recent European establishment of the amphi-Atlantic peat moss Sphagnum angermanicum. Evolution 65: 1181-1194.
  • Tzedakis, P.C., Emerson, B.C. and Hewitt, G.M. 2013. Cryptic or mystic? Glacial tree refugia in northern Europe. Trends Ecol. Evol. 28: 696-704.
  • Vanderpoorten, A., Rumsey, F. and Carine, M. 2007. Does Macaronesia exist? Conflicting signal in the bryophyte and pteridophyte floras. Am. J. Bot. 94: 625-639.
  • Wakeley, J. 2001. The coalescent in an island model of population subdivision with variation among demes. Theor. Pop. Biol. 59: 133-144.
  • Wakeley, J. 2008. Coalescent Theory: An Introduction. W.H. Freeman & Company 432 pp. Weigelt, P., Steinbauer, M.J., Sarmento Cabral, J. and Kreft, H. 2016. Late Quaternary climate change shapes island biodiversity. Nature 532: 99-102.
  • Wu, H., guiot, J., Brewer, S. and Guo, Z. 2007. Climatic changes in Eurasia and Africa at the last glacial maximum and mid-Holocene: reconstruction from pollen data using inverse vegetation modelling. Clim. Dim. 29: 211-229.