Formulación lineal de extensiones del problema de localización competitiva del líder- seguidor

  1. Campos Rodríguez, Clara M. 1
  2. Santos Peñate, Dolores R. 2
  3. Moreno Pérez, José Andrés 1
  1. 1 Instituto Universitario de Desarrollo Regional, Universidad de La Laguna
  2. 2 Departamento de Métodos Cuantitativos en Economía y Gestión, Universidad de Las Palmas De Gran Canarias
Revista:
Estudios de economía aplicada

ISSN: 1133-3197 1697-5731

Año de publicación: 2013

Título del ejemplar: La energías renovables y el desarrollo sostenible

Volumen: 31

Número: 1

Páginas: 255-256

Tipo: Artículo

DOI: 10.25115/EEA.V31I1.3272 DIALNET GOOGLE SCHOLAR lock_openDialnet editor

Otras publicaciones en: Estudios de economía aplicada

Objetivos de desarrollo sostenible

Resumen

The leader-follower problem is a sequential decision problem where, in a market initially without service centers, a firm, the leader, opens its centers and another competing firm, the follower, will enter later the market opening its centers. The leader chooses the locations taking into account that the follower will enter the market opening  its  centers and capturing part of the market share. The objective of each competing firm is to maximize its market share. We consider that the clients will behave making a binary choice using the distance as basis for her/his choice criterion. We extend the basic model by considering a threshold in the client choice rule and opening costs depending on the location. We get formulations of the problem extensions as linear programs from the basic linear model.

Referencias bibliográficas

  • ALEKSEEVA, E.; KOCHETOVA, N.; KOCHETOV, Y. y PLYASUNOV, A. (2010). “Heuristic and exact methods for the discrete (r|p)-centroid problem”. En Cowling, P.I. y Merz, P. (ed.): EvoCOP’10 Proceedings of the 10th European Conference on Evolutionary Computation in Combinatorial Optimization (pp.11-22). Berlin: Springer-Verlag.
  • BENATI, S. y LAPORTE, G. (1994). “Tabu search algorithms for the (r|Xp)-medianoid and (r|p)-centroid problems”. Location Science, 2, pp. 193-204.
  • BERMAN, O. y KRASS D. (2002). “The generalized maximal covering location problem”. Computers & Operations Research, 29, pp. 563-581.
  • BHADURY, J.; EISELT, H.A. y JARAMILLO, J.H. (2003). “An alternating heuristic for medianoid and centroid problems in the plane”. Computers & Operations Research, 30, pp. 553-565.
  • CAMPOS, C.; SANTOS-PEÑATE D.R. y MORENO J.A. (2010). “An exact procedure and LP formulations for the leader-follower problema”. TOP, 18(1), pp. 97-121.
  • CAMPOS, C.; SANTOS-PEÑATE, D.R. y MORENO, J.A. (2011). “Competencia espacial por cuotas de mercado: el problema del líder-seguidor mediante programación lineal”. Rect@. Revista Electrónica de Comunicaciones y Trabajos de ASEPUMA,12, pp. 68-84.
  • DASKIN, M.S. (1995). Network and Discrete Location: Models, Algorithms, and Applications. New York: Wiley.
  • DEVLETOGLOU, N.E. (1965). “A dissenting view of duopoly and spatial competition”. Economica, pp. 141-160.
  • DEVLETOGLOU, N.E. y DEMETRIOU, P.A. (1967). “Choice and threshold: a further experiment in spatial duopoly”. Economica, pp. 351-371.
  • DOBSON, G. y KARMARKAR, U.S. (1987). “Competitive location on a network”. Oper. Res., 35, pp. 565-574.
  • EISELT, H.A. y LAPORTE, G. (1989). “Competitive spatial models”. European Journal of Operational Research, 39, pp. 231-242.
  • EISELT, H.A. y LAPORTE, G. (1996). “Sequential location problems”. European Journal of Operational Research, 96, pp. 217-231.
  • EISELT, H.A.; LAPORTE, G. y THISSE, J.F. (1993). “Competitive spatial models: A framework and bibliography”. Transportation Science, 27(1), pp. 44-54.
  • FRIESZ, T.L.; MILLER, T. y TOBIN, R.L. (1988). “Competitive network facility location models: a survey”. Papers of the Regional Science Association, 65, pp. 47-57.
  • GANDHI, R.; KHULLER, S. y SRINIVASAN, A. (2004). “Approximation algorithms for partial covering problems”. Journal of Algorithms, 53(1), pp. 55– 84.
  • HAKIMI, S.L. (1983). “On locating new facilities in a competitive environment”. European Journal of Operational Research, 12, pp. 29-35.
  • HAKIMI, S.L. (1990). “Location with spatial interactions: competitive locations and games”. En Mirchandani, P.B. y Francis, R.L. (ed.): Discrete Location Theory (pp. 439-478). New York: Wiley.
  • KRESS, D. y PESCH, E. (2012). “Sequential competitive location on networks”. European Journal of Operational Research, 217, pp. 483-499.
  • PLASTRIA, F. (1990). “Static competitive facility location: an overview of optimization approaches”. European Journal of Operational Research, 129, pp. 461-470.
  • REDONDO, J.L.; FERNÁNDEZ, J.; GARCÍA, I. y ORTIGOSA, P.M. (2010). “Heuristics for the facility location and design (1|1)-centroid problem on the plane”. Computational Optimization and Applications, 45(1), pp. 111-141.
  • REVELLE C. (1986). “The maximum capture or sphere of influence location problem: Hotelling revisited on a network”. Journal of Regional Science, 26(2), pp. 343-358.
  • SANTOS-PEÑATE, D.R.; SUÁREZ-VEGA, R. y DORTA-GONZÁLEZ, P. (2007). “The leader-follower location model”. Networks and Spatial Economics, 7, pp. 45-61.
  • SERRA, D. y REVELLE, C. (1994). “Market capture by two competitors: the preemptive location problem”. Journal of Regional Science, 34(4), pp. 549- 561.
  • SERRA, D. y REVELLE, C. (1995). “Competitive location in discrete space”. En Z. Drezner (ed.): Facility location: A survey of applications and methods (pp. 367-386). Berlin: Springer.
  • SPOERHASE, J. y WIRTH, H.C. (2009). “(r|p)-centroid problems on paths and trees”. Theoretical Computer Science, 410(47-49), pp. 5128-5137.
  • SANTOS-PEÑATE, D.R.; SUÁREZ-VEGA, R. y DORTA-GONZÁLEZ, P. (1999). “Equilibrio localización-atractivo para dos competidores con cadenas de centros de servicio igualmente atractivos”. Estudios de Economía Aplicada, 12, pp. 145-164.
  • SUÁREZ-VEGA, R.; SANTOS-PEÑATE, D.R. y DORTA-GONZÁLEZ, P. (2004). “Competitive multifacility location on networks: the (r|Xp)-medianoid problem”. Journal of Regional Science, 44(3), pp. 569-588.