Design and calculation of a hybrid solar-hydraulic power station in Gran Canaria

  1. Abian Beltrán 1
  2. Herberth García León 2
  3. Daniella Rodríguez Urrego 3
  4. Leonardo Rodríguez Urrego 2
  1. 1 Universidad Las Palmas de Gran Canaria
  2. 2 Universidad EAN
    info

    Universidad EAN

    Bogotá, Colombia

    GRID grid.442167.2

  3. 3 Universidad Católica de Colombia
    info

    Universidad Católica de Colombia

    Bogotá, Colombia

    GRID grid.442151.7

Journal:
DYNA: revista de la Facultad de Minas. Universidad Nacional de Colombia. Sede Medellín

ISSN: 0012-7353

Year of publication: 2018

Volume: 85

Issue: 206

Pages: 250-257

Type: Article

Export: RIS
DOI: 10.15446/dyna.v85n206.70573 GOOGLE SCHOLAR lock_openOpen access editor

Metrics

Cited by

  • Scopus Cited by: 0 (31-07-2021)

SCImago Journal Rank

  • Year 2018
  • SJR Journal Impact: 0.157
  • Best Quartile: Q3
  • Area: Engineering (miscellaneous) Quartile: Q3 Rank in area: 355/789

CiteScore

  • Year 2018
  • CiteScore of the Journal : 0.6
  • Area: Engineering (all) Percentile: 33

Abstract

This paper propose the design, calculation and feasibility study of a reversible hydroelectric plant located in the island of Gran Canaria, with the support of a solar power plant to cover a part of the energy demand of the pumping of water from a lower reservoir to a higher one. This work is motivated in order that the island of Gran Canaria has the first hydroelectric power station in its history, and has energy storage to cover peak hours of demand between 18 and 22 hours. At the same time, it is intend to increase the installed capacity of renewable sources to the detriment of fossil fuels. Finally, this paper conclude with an economic study where a budget and its corresponding prefeasibility study are estimated, considering a construction period of 4 years and a useful life of the installation of 25 years.

Bibliographic References

  • Hussain, A., Arif, S.M. and Aslam, M., Emerging renewable and sustainable energy technologies: State of the art. Renewable Sustainable Energy Reviews, 71, pp. 12-28, 2017. DOI: 10.1016/j.rser.2016.12.033
  • Avila-Prats, D., Alesanco-García, R. and Veliz-Alonso, J., Sistemas híbridos con base en las energías renovables para el suministro de energía a plantas desaladoras. Ing. Mecánica [En línea]. 14, pp. 22-30, 2011. [fecha de referencia: Agosto 14 de 2018]. Disponible en: http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S1815-59442011000100003
  • Huang, Q., Shi, Y., Wang, Y., Lu, L. and Cui, Y.,Multi-turbine wind-solar hybrid system. Renew. Energy, 76, pp. 401-407, 2015. DOI: 10.1016/j.renene.2014.11.060
  • Balta, S., Talat-Birgonul, M. and Dikmen, I., Buffer sizing model incorporating fuzzy risk assessment: case study on concrete gravity dam and hydroelectric power plant projects, J. risk uncertain. Eng. Syst. Part A Civil. Eng., 4(1), 2018. DOI: 10.1061/AJRUA6.0000948
  • Rios, R., Ortigoza, E., Romero, C. and Morinigo, L., Analysis and optimization of energy resources of the city of Bahía Negra Chaco [Online], Proceedings of the 2017 IEEE URUCON, pp. 1-4, Montevideo, UR, 2017. Available at: https://ieeexplore.ieee.org/document/8171887/
  • International Renewable Energy Agency. IRENA. [Online]. [date of reference August 14th of 2018]. Available at: http://www.irena.org/publications/2017/May/Renewable-Energy-and-Jobs--Annual-Review-2017.
  • Red Eléctrica de España. Sistema eléctrico canario [En línea]. 2015. [fecha de referencia: Agosto 14 de 2018]. Disponible en: http://www.ree.es/es/actividades/sistema-electrico-canario.
  • Gobierno de canarias, Anuario Energetico de Canarias [En línea]. 2016. [fecha de referencia: Agosto 14 de 2018]. Disponible en: http://www.gobiernodecanarias.org/ceic/energia/doc/Publicaciones/AnuarioEnergeticoCanarias/ANUARIO-ENERGETICO-CANARIAS-2016.pdf
  • de Faria, F., Davis, A., Severnini, E. and Jaramillo, P., The local socio-economic impacts of large hydropower plant development in a developing country. Energy Econ., 2017. DOI: 10.1016/j.eneco.2017.08.025
  • Dujardin, J., Kahl, A., Kruyt, B., Bartlett, S. and Lehning, M., Interplay between photovoltaic, wind energy and storage hydropower in a fully renewable Switzerland. Energy, 135, pp. 513-525, 2017. DOI: 10.1016/j.energy.2017.06.092
  • PROYECTOS HIDROPROYECTOS INGENIEROS CONSULTORES [En línea]. [fecha de referencia: Agosto 14 de 2018] Disponible en: http://www.hidroproyectos.com/Proyectos.
  • Rodríguez-Urrego, D. and Rodríguez-Urrego, L., Photovoltaic energy in Colombia: Current status, inventory, policies and future prospects. Renew. Sustain. Energy Rev. 92, pp. 160-170, 2018. DOI: 10.1016/j.rser.2018.04.065
  • Saidi, A. and Chellali, B., Simulation and control of Solar Wind hybrid renewable power system, Proceedings of the 6th International Conference on Systems and Control (ICSC), pp. 51-56, Batna, Algeria, 2017.
  • Coban, H., Moskins, I. and Sauhats, A., The optimization capabilities of combined solar/hydropower plant operation, Proceedings of the IEEE 4th Workshop on Advances in Information, Electronic and Electrical Engineering (AIEEE), pp. 1-6, Vilnius, Lithuania, 2016.
  • Chaer, R. and Zeballos, R., Simplified model of a hydroelectric generation plant for teaching purposes. IEEE Lat. Am. Trans., 4(3), pp. 198-211, 2006. DOI: 10.1109/TLA.2006.4472114
  • Kabalci, Y., Kabalci, E., Canbaz, R. and Calpbinici, A., Design and implementation of a solar plant and irrigation system with remote monitoring and remote control infrastructures. Sol. Energy, 139, pp. 506-517, 2016. DOI: 10.1016/j.solener.2016.10.026
  • Rodriguez-Urrego, L., Valencia, J., Rodriguez-Urrego, D. and Martinez, A., Design, implementation and operation of a solar hybrid system in a remote area in the Colombian Guajira desert. WIT Transactions on Ecology and the Environment, 195, pp. 427-438, 2015. DOI: 10.2495/ESUS150361
  • Rodriguez-Urrego, L., Garcia, E., Morant, F., Correcher, A. and Quiles, E., Hybrid analysis in the latent nestling method applied to fault diagnosis. IEEE Trans. Autom. Sci. Eng., 10(2), pp. 415-430, 2013. DOI: 10.1109/TASE.2012.2229706
  • Chen, Q., Chen, T., Guo, J., Zeng, H. and Xiao, Z., Study and design of digital simulation system for pumped storage hydropower units, Proceedings of the 10th World Congress on Intelligent Control and Automation, pp. 3068-3071, 2012. DOI: 10.1109/WCICA.2012.6358398
  • Relva, S.G., Udaeta, M.E.M., Gimenes, A.L.V. and Grimoni, J.A.B., Solar energy analysis supported on hydropower modelling for taking advantage of photovoltaic power plants, Proceedings of the 5th International Youth Conference on Energy (IYCE), pp. 1-8, 2015. DOI: 10.1109/IYCE.2015.7180814
  • Red Eléctrica de España. Soria-Chira - Central Hidroeléctrica Reversible [En línea]. [fecha de referencia: Agosto 14 de 2018]. Disponible en: http://www.ree.es/html_chira_soria/index.html.