Tracking Deformable Objects with Evolving Templates for Real-Time Machine Vision

  1. Sánchez-Nielsen, Elena
  2. Hernández-Tejera, Mario
Libro:
Pattern Recognition, Machine Intelligence and Biometrics

Editorial: Springer

ISBN: 978-3-642-22407-2 978-3-642-22406-5

Año de publicación: 2011

Páginas: 213-235

Tipo: Capítulo de Libro

DOI: 10.1007/978-3-642-22407-2_9 GOOGLE SCHOLAR

Resumen

A tracking approach not only needs to matching target objects in dynamic scenes, it also needs to update templates when it is required, computing occlusions, and processing multiple-objects with real-time performance. In this Chapter, we present an heuristic search algorithm with target dynamics to match target objects with real-time performance on general purpose hardware. The results of this heuristic search are combined with the more common views of target objects, and intensity information in order to update the templates. As a result, the updating process will be computed only when the target object has evolved to a transformed shape dissimilar with respect to the current shape, providing robust tracking, and multiobject tracking because accurate template updating is performed. The paper includes experimental results with inside and outside video streams demonstrating the effectiveness and efficiency for real-time machine vision based tasks in unrestricted environments.

Referencias bibliográficas

  • [1] Isard M, Blake A (1998) Condensation-conditional Density Propagation for Visual Tracking. International Journal of Computer Vision, 29(1): 5–28 CrossRefGoogle Scholar
  • [2] Beymer D, McLauchlan P, Coifman B et al (1997) A Real-time Computer Vision System for Measuring Traffic Parameters. In: Proc IEEE Conf on Computer Vision and Pattern Recognition (CVPR) Google Scholar
  • [3] Adam A, Rivlin E, Shimshoni I (2006) Robust Fragments-based Tracking Using the Integral Histogram. In: IEEE Conf Computer Vison and Pattern Recognition, CVPR Google Scholar
  • [4] Adam A, Rivlin E, Shimshoni et al (2006) Robust Fragments-based Tracking Using the Integral Histogram. Proceedings of IEEE Conference On Computer Vision and Pattern Recognition (CVPR), 2006 Google Scholar
  • [5] Aloimonos Y (ed) (1993) Active Perception. Lawrence Erlbaum Assoc, Pub, N J Google Scholar
  • [6] Bajcsy R (1988) Active Perception. In Proceedings of IEEE Workshop on Computer Vision, 76(8): 996–1005 Google Scholar
  • [7] Collins R, Lipton A, Fujiyoshi H et al (2001) Algorithms for Cooperative Multisensor Surveillance. Proc IEEE, 89(10): 1456–1477 CrossRefGoogle Scholar
  • [8] Koller D, Daniilidis H, Nagel H (1993) Model-based Object Tracking in Monocular Sequences of Road Traffic Scenes. In: International Journal of Computer Vision, 10: 257–281 CrossRefGoogle Scholar
  • [9] Turk, Mathew (2004) Computer Vision in the Interface. Communications of the ACM, 47(1): 61–67 CrossRefGoogle Scholar
  • [10] Parra R, Devy M, Briot M (1999) 3D Modelling and Robot Localization from Visual and Range Data in Natural Scenes. LNCS, 1542: 450–468, Springer Google Scholar
  • [11] Lange C, Hernmann T, Ritter H (2003) Holistic Body Tracking for Gestural Interfaces. In Lectures Note in Computer Science, 2915: 132–13. Springer, Heidelberg Google Scholar
  • [12] Pentland A P (2000) Perceptual Intelligence. Communications of the ACM, 43(3): 35–44 CrossRefGoogle Scholar
  • [13] Cham T, Rehg J (1999) A Multiple Hypothesis Approach to Figure Tracking. IEEE Computer Vision and Pattern Recognition, 2: 219–239 Google Scholar
  • [14] Gavrila D M (1999) The Visual Analysis of Human Movement: A Survey. Computer Vision and Image Understanding, 73: 82–89 zbMATHCrossRefGoogle Scholar
  • [15] Baker S, Matthews I (2004) “Lucas Kanade 20 Years On: A Unifying Framework’. International Journal of Computer Vision, 56(3): 221–255 CrossRefGoogle Scholar
  • [16] Belongie S, Malik J, Puzicha J (2002) Shape Matching and Object Recognition using shape context. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(4): 509–522 CrossRefGoogle Scholar
  • [17] Besl P J, McKay N (1992) A Method for Registration of 3D Shapes. IEEE Transactions on Pattern Analysis and Machine Intelligence, 14(2): 239–256 CrossRefGoogle Scholar
  • [18] Chen Y, Medioni G (1992) Object Modelling by Registration of Multiple Range Images. Image and Vision Computing, 10(3): 145–155 CrossRefGoogle Scholar
  • [19] Rucklidge W J (1996) Efficient computation of the minimum Hausdorff distance for visual recognition. LNCS 1173, Springer Google Scholar
  • [20] Schlegel C, Illmann J, Jaberg H et al (1999) Integrating Vision based behaviours with an autonomous robot. LNCS 1542: 1–20, Springer Google Scholar
  • [21] Comaniciu D, Ramesh V, Meer P (2000) Real-time Tracking of Non-rigid Objects Using Mean Shift. Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, vol 2: 142–149 CrossRefGoogle Scholar
  • [22] Hager G D, Belhumeur P N (1998) Efficient Region Tracking with Parametric Models of Geometry and Illumination. IEEE Transactions on Pattern Analysis and Machine Intelligence, 20(10): 1025–1039 CrossRefGoogle Scholar
  • [23] Liu T L, Chen H T (2004) Real-Time Tracking Using Trust-Region Methods. IEEE Transactions on Pattern Analysis and Machine Intelligence, 26(3): 397–401 CrossRefGoogle Scholar
  • [24] Sánchez Nielsen E, Hernández Tejera M (2001) Tracking Moving Objects Using the Hausdorff Distance. A Method and Experiments. Frontiers in Artificial Intelligence and Applications: Pattern Recognition and Applications, IOSPRess, pp 164–172 Google Scholar
  • [25] Reynolds J (1998) Autonomous Underwater Vehicle: Vision System. PhD thesis, Robotic Systems Lab. Department of Engineering, Australian National University Google Scholar
  • [26] Matthews I, Ishikawa T, Baker S (2004) The Template Update Problem. IEEE Transactions on Pattern Analysis and Machine Intelligence, 26(6): 810–815 CrossRefGoogle Scholar
  • [27] Huttenlocher D P, Klanderman G A, Rucklidge W J (1993) Comparing Images Using the Hausdorff Distance. IEEE Transactions on Pattern Analysis and Machine Intelligence, 15(9): 850–863 CrossRefGoogle Scholar
  • [28] Canny J (1986) A Computational Approach to Edge Detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 8(6): 679–698 CrossRefGoogle Scholar
  • [29] Pearl J (1984) Heuristics. Intelligent Search Strategies for Computer Problem Solving. Addison-Wesley, New York Google Scholar
  • [30] Kullback S (1959) Information Theory and Statistics. Wiley, New York zbMATHGoogle Scholar
  • [31] Cover Thomas M, Thomas Joy A (1991) Elements of Information Theory, Wiley, New York Google Scholar
  • [32] Bar-Shalom Y, Xiao-Rong Li (1993) Estimation and Tracking: Principles. Techniques, and Software. Artech House Press, Boston Google Scholar
  • [33] Robert Fischer (2007) Caviar Tests Case Scenarios HTTP. http://groups.inf. ed.ac.uk/vision/CAVIAR/CAVIARDATA1/. Accessed 30 September 2010 Google Scholar
  • [34] Antón-Canalís L, Hernández-Tejera M, Sánchez-Nielsen E (2006) AddCanny: Edge Detector for Video Processing. In: Blanc-Talon J, Philips W, Popescu D et al (eds) ACIVS 2006: LNCS, vol 4179, Springer Google Scholar