A vascular endothelial growth factor receptor gene variant is associated with susceptibility to acute respiratory distress syndrome

  1. Ma, Shwu-Fan
  2. Guillen-Guio, Beatriz
  3. Ambrós, Alfonso
  4. Diaz-Dominguez, Francisco J.
  5. Villar, Jesús
  6. Flores, Carlos
  7. Hernandez-Pacheco, Natalia
  8. Pino-Yanes, Maria 1
  9. Muriel, Arturo
  10. Acosta-Herrera, Marialbert
  11. González-Higueras, Elena
  12. Belda, Javier
  13. Zavala, Elizabeth
  14. Corrales, Almudena
  15. Nogales, Leonor
  1. 1 Universidad de La Laguna
    info

    Universidad de La Laguna

    San Cristobal de La Laguna, España

    ROR https://ror.org/01r9z8p25

Revista:
Intensive Care Medicine Experimental

ISSN: 2197-425X

Año de publicación: 2018

Volumen: 6

Número: 1

Tipo: Artículo

DOI: 10.1186/S40635-018-0181-6 GOOGLE SCHOLAR

Otras publicaciones en: Intensive Care Medicine Experimental

Resumen

BackgroundThe acute respiratory distress syndrome (ARDS) is one of the main causes of mortality in adults admitted to intensive care units. Previous studies have demonstrated the existence of genetic variants involved in the susceptibility and outcomes of this syndrome. We aimed to identify novel genes implicated in sepsis-induced ARDS susceptibility.MethodsWe first performed a prioritization of candidate genes by integrating our own genomic data from a transcriptomic study in an animal model of ARDS and from the only published genome-wide association study of ARDS study in humans. Then, we selected single nucleotide polymorphisms (SNPs) from prioritized genes to conduct a case-control discovery association study in patients with sepsis-induced ARDS (n = 225) and population-based controls (n = 899). Finally, we validated our findings in an independent sample of 661 sepsis-induced ARDS cases and 234 at-risk controls.ResultsThree candidate genes were prioritized: dynein cytoplasmic-2 heavy chain-1, fms-related tyrosine kinase 1 (FLT1), and integrin alpha-1. Of those, a SNP from FLT1 gene (rs9513106) was associated with ARDS in the discovery study, with an odds ratio (OR) for the C allele of 0.76, 95% confidence interval (CI) 0.58–0.98 (p = 0.037). This result was replicated in an independent study (OR = 0.78, 95% CI = 0.62–0.98, p = 0.039), showing consistent direction of effects in a meta-analysis (OR = 0.77, 95% CI = 0.65–0.92, p = 0.003).ConclusionsWe identified FLT1 as a novel ARDS susceptibility gene and demonstrated that integration of genomic data can be a valid procedure to identify novel susceptibility genes. These results contribute to previous firm associations and functional evidences implicating FLT1 gene in other complex traits that are mechanistically linked, through the key role of endothelium, to the pathophysiology of ARDS.

Referencias bibliográficas

  • Bernard GR, Artigas A, Brigham KL, Carlet J, Falke K, Hudson L, Lamy M, Legall JR, Morris A, Spragg R (1994) The American-European Consensus Conference on ARDS. Definitions, mechanisms, relevant outcomes, and clinical trial coordination. Am J Respir Crit Care Med 149:818–824. https://doi.org/10.1164/ajrccm.149.3.7509706
  • Villar J, Blanco J, Anon JM, Santos-Bouza A, Blanch L, Ambros A, Gandia F, Carriedo D, Mosteiro F, Basaldua S et al (2011) The ALIEN study: incidence and outcome of acute respiratory distress syndrome in the era of lung protective ventilation. Intensive Care Med 37:1932–1941. https://doi.org/10.1007/s00134-011-2380-4
  • Villar J, Blanco J, Kacmarek RM (2016) Current incidence and outcome of the acute respiratory distress syndrome. Curr Opin Crit Care 22:1–6. https://doi.org/10.1097/MCC.0000000000000266.
  • Rubenfeld GD, Caldwell E, Peabody E, Weaver J, Martin DP, Neff M, Stern EJ, Hudson LD (2005) Incidence and outcomes of acute lung injury. N Engl J Med 353:1685–1693. https://doi.org/10.1056/NEJMoa050333
  • Matthay MA, Zimmerman GA (2005) Acute lung injury and the acute respiratory distress syndrome: four decades of inquiry into pathogenesis and rational management. Am J Respir Cell Mol Biol 33:319–327. https://doi.org/10.1165/rcmb.F305
  • Acosta-Herrera M, Pino-Yanes M, Perez-Mendez L, Villar J, Flores C (2014) Assessing the quality of studies supporting genetic susceptibility and outcomes of ARDS. Front Genet 5:20. https://doi.org/10.3389/fgene.2014.00020
  • Flores C, Pino-Yanes Mdel M, Villar J (2008) A quality assessment of genetic association studies supporting susceptibility and outcome in acute lung injury. Crit Care 12:R130. https://doi.org/10.1186/cc7098
  • Villar J, Perez-Mendez L, Blanco J, Anon JM, Blanch L, Belda J, Santos-Bouza A, Fernandez RL, Kacmarek RM (2013) A universal definition of ARDS: the PaO2/FiO2 ratio under a standard ventilatory setting—a prospective, multicenter validation study. Intensive Care Med 39:583–592. https://doi.org/10.1007/s00134-012-2803-x
  • Martin GS, Mannino DM, Eaton S, Moss M (2003) The epidemiology of sepsis in the United States from 1979 through 2000. N Engl J Med 348:1546–1554. https://doi.org/10.1056/NEJMoa022139
  • Erickson SE, Shlipak MG, Martin GS, Wheeler AP, Ancukiewicz M, Matthay MA, Eisner MD (2009) Racial and ethnic disparities in mortality from acute lung injury. Crit Care Med 37:1–6
  • Linko R, Okkonen M, Pettila V, Perttila J, Parviainen I, Ruokonen E, Tenhunen J, Ala-Kokko T, Varpula T (2009) Acute respiratory failure in intensive care units. FINNALI: a prospective cohort study. Intensive Care Med 35:1352–1361
  • Christie JD, Wurfel MM, Feng R, O'Keefe GE, Bradfield J, Ware LB, Christiani DC, Calfee CS, Cohen MJ, Matthay M et al (2012) Genome wide association identifies PPFIA1 as a candidate gene for acute lung injury risk following major trauma. PLoS One 7:e28268. https://doi.org/10.1371/journal.pone.0028268
  • Acosta-Herrera M, Lorenzo-Diaz F, Pino-Yanes M, Corrales A, Valladares F, Klassert TE, Valladares B, Slevogt H, Ma SF, Villar J, Flores C (2015) Lung transcriptomics during protective ventilatory support in sepsis-induced acute lung injury. PLoS One 10:e0132296. https://doi.org/10.1371/journal.pone.0132296
  • Dennis G Jr, Sherman BT, Hosack DA, Yang J, Gao W, Lane HC (2003) Lempicki RA (2003) DAVID: database for annotation, visualization, and integrated discovery. Genome Biol 4:P3
  • Mura M, dos Santos CC, Stewart D, Liu M (2004) Vascular endothelial growth factor and related molecules in acute lung injury. J Appl Physiol 97:1605–1617. https://doi.org/10.1152/japplphysiol.00202.2004
  • Larrivee B, Freitas C, Suchting S, Brunet I, Eichmann A (2009) Guidance of vascular development: lessons from the nervous system. Circ Res 104:428–441. https://doi.org/10.1161/CIRCRESAHA.108.188144
  • Segura I, De Smet F, Hohensinner PJ, Ruiz de Almodovar C, Carmeliet P (2009) The neurovascular link in health and disease: an update. Trends Mol Med 15:439–451. https://doi.org/10.1016/j.molmed.2009.08.005
  • Howrylak JA, Dolinay T, Lucht L, Wang Z, Christiani DC, Sethi JM, Xing EP, Donahoe MP, Choi AM (2009) Discovery of the gene signature for acute lung injury in patients with sepsis. Physiol Genomics 37:133–139. https://doi.org/10.1152/physiolgenomics.90275.2008
  • The Gene Ontology Consortium (2017) Expansion of the Gene Ontology knowledgebase and resources. Nucleic Acids Res 45:D331–D338. https://doi.org/10.1093/nar/gkw1108
  • Kanehisa M, Goto S (2000) KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28:27–30. https://doi.org/10.1093/nar/28.1.27
  • Cookson W, Liang L, Abecasis G, Moffatt M, Lathrop M (2009) Mapping complex disease traits with global gene expression. Nat Rev Genet 10:184–194. https://doi.org/10.1038/nrg2537
  • Nyholt DR (2004) A simple correction for multiple testing for single-nucleotide polymorphisms in linkage disequilibrium with each other. Am J Hum Genet 74:765–769. https://doi.org/10.1086/383251
  • Abecasis GR, Auton A, Brooks LD, DePristo MA, Durbin RM, Handsaker RE, Kang HM, Marth GT, McVean GA (2012) An integrated map of genetic variation from 1,092 human genomes. Nature 491:56–65. https://doi.org/10.1038/nature11632
  • Barrett JC, Fry B, Maller J, Daly MJ (2005) Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 21:263–265. https://doi.org/10.1093/bioinformatics/bth457
  • ARDS Definition Task Force, Ranieri VM, Rubenfeld GD, Thompson BT, Ferguson ND, Caldwell E, Fan E, Camporota L, Slutsky AS (2012) Acute respiratory distress syndrome: the Berlin definition. JAMA 307:2526–2533. https://doi.org/10.1001/jama.2012.5669
  • Spanish National DNA Biobank, Salamanca. http://www.bancoadn.org . Accessed 10 Sept 2014
  • R Development Core Team (2008) R: a language and environment for statistical computing, Viena, Austria. http://www.R-project.org
  • Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, Maller J, Sklar P, de Bakker PI, Daly MJ, Sham PC (2007) PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 81:559–575. https://doi.org/10.1086/519795
  • Price AL, Patterson NJ, Plenge RM, Weinblatt ME, Shadick NA, Reich D (2006) Principal components analysis corrects for stratification in genome-wide association studies. Nat Genet 38:904–909. https://doi.org/10.1038/ng1847
  • Fuchsberger C, Abecasis GR, Hinds DA (2015) minimac2: faster genotype imputation. Bioinformatics 31:782–784. https://doi.org/10.1093/bioinformatics/btu704
  • McCarthy S, Das S, Kretzschmar W, Delaneau O, Wood AR, Teumer A, Kang HM, Fuchsberger C, Danecek P, Sharp K et al (2016) A reference panel of 64,976 haplotypes for genotype imputation. Nat Genet 48:1279–1283. https://doi.org/10.1038/ng.3643
  • Das S, Forer L, Schonherr S, Sidore C, Locke AE, Kwong A, Vrieze SI, Chew EY, Levy S, McGue M et al (2016) Next-generation genotype imputation service and methods. Nat Genet 48:1284–1287. https://doi.org/10.1038/ng.3656
  • Han B, Eskin E (2011) Random-effects model aimed at discovering associations in meta-analysis of genome-wide association studies. Am J Hum Genet 88:586–598. https://doi.org/10.1016/j.ajhg.2011.04.014
  • Ward LD, Kellis M (2012) HaploReg: a resource for exploring chromatin states, conservation, and regulatory motif alterations within sets of genetically linked variants. Nucleic Acids Res 40:D930–D934. https://doi.org/10.1093/nar/gkr917
  • GTEx Consortium (2013) The genotype-tissue expression (GTEx) project. Nat Genet 45:580–585. https://doi.org/10.1038/ng.2653
  • Rushefski M, Aplenc R, Meyer N, Li M, Feng R, Lanken PN, Gallop R, Bellamy S, Localio AR, Feinstein SI et al (2011) Novel variants in the PRDX6 gene and the risk of acute lung injury following major trauma. BMC Med Genet 12:77. https://doi.org/10.1186/1471-2350-12-77
  • Matsumoto T, Mugishima H (2006) Signal transduction via vascular endothelial growth factor (VEGF) receptors and their roles in atherogenesis. J Atheroscler Thromb 13:130–135. https://doi.org/10.5551/jat.13.130
  • Hamada N, Kuwano K, Yamada M, Hagimoto N, Hiasa K, Egashira K, Nakashima N, Maeyama T, Yoshimi M, Nakanishi Y (2005) Anti-vascular endothelial growth factor gene therapy attenuates lung injury and fibrosis in mice. J Immunol 175:1224–1231. https://doi.org/10.4049/jimmunol.175.2.1224
  • Konta A, Ozaki K, Sakata Y, Takahashi A, Morizono T, Suna S, Onouchi Y, Tsunoda T, Kubo M, Komuro I et al (2016) A functional SNP in FLT1 increases risk of coronary artery disease in a Japanese population. J Hum Genet 61:435–441. https://doi.org/10.1038/jhg.2015.171
  • Maitre B, Boussat S, Jean D, Gouge M, Brochard L, Housset B, Adnot S, Delclaux C (2001) Vascular endothelial growth factor synthesis in the acute phase of experimental and clinical lung injury. Eur Respir J 18:100–106
  • Thickett DR, Armstrong L, Millar AB (2002) A role for vascular endothelial growth factor in acute and resolving lung injury. Am J Respir Crit Care Med 166:1332–1337. https://doi.org/10.1164/rccm.2105057
  • Abadie Y, Bregeon F, Papazian L, Lange F, Chailley-Heu B, Thomas P, Duvaldestin P, Adnot S, Maitre B, Delclaux C (2005) Decreased VEGF concentration in lung tissue and vascular injury during ARDS. Eur Respir J 25:139–146. https://doi.org/10.1183/09031936.04.00065504
  • Kaner RJ, Crystal RG (2001) Compartmentalization of vascular endothelial growth factor to the epithelial surface of the human lung. Mol Med 7:240–246
  • Ferrara N, Gerber HP, LeCouter J (2003) The biology of VEGF and its receptors. Nat Med 9:669–676. https://doi.org/10.1038/nm0603-669
  • Kaner RJ, Ladetto JV, Singh R, Fukuda N, Matthay MA, Crystal RG (2000) Lung overexpression of the vascular endothelial growth factor gene induces pulmonary edema. Am J Respir Cell Mol Biol 22:657–664. https://doi.org/10.1165/ajrcmb.22.6.3779
  • Deloukas P, Kanoni S, Willenborg C, Farrall M, Assimes TL, Thompson JR, Ingelsson E, Saleheen D, Erdmann J, Goldstein BA et al (2013) Large-scale association analysis identifies new risk loci for coronary artery disease. Nat Genet 45:25–33. https://doi.org/10.1038/ng.2480
  • Howson JMM, Zhao W, Barnes DR, Ho WK, Young R, Paul DS, Waite LL, Freitag DF, Fauman EB, Salfati EL et al (2017) Fifteen new risk loci for coronary artery disease highlight arterial-wall-specific mechanisms. Nat Genet 49:1113–1119. https://doi.org/10.1038/ng.3874
  • McGinnis R, Steinthorsdottir V, Williams NO, Thorleifsson G, Shooter S, Hjartardottir S, Bumpstead S, Stefansdottir L, Hildyard L, Sigurdsson JK et al (2017) Variants in the fetal genome near FLT1 are associated with risk of preeclampsia. Nat Genet 49:1255–1260. https://doi.org/10.1038/ng.3895
  • Maynard SE, Min JY, Merchan J, Lim KH, Li J, Mondal S, Libermann TA, Morgan JP, Sellke FW, Stillman IE et al (2003) Excess placental soluble fms-like tyrosine kinase 1 (sFlt1) may contribute to endothelial dysfunction, hypertension, and proteinuria in preeclampsia. J Clin Invest 111:649–658. https://doi.org/10.1172/JCI17189
  • Lee JY, Lee BS, Shin DJ, Woo Park K, Shin YA, Joong Kim K, Heo L, Young Lee J, Kyoung Kim Y, Jin Kim Y et al (2013) A genome-wide association study of a coronary artery disease risk variant. J Hum Genet 58:120–126. https://doi.org/10.1038/jhg.2012.124
  • Shapiro NI, Schuetz P, Yano K, Sorasaki M, Parikh SM, Jones AE, Trzeciak S, Ngo L, Aird WC (2010) The association of endothelial cell signaling, severity of illness, and organ dysfunction in sepsis. Crit Care 14:R182. https://doi.org/10.1186/cc9290
  • Skibsted S, Jones AE, Puskarich MA, Arnold R, Sherwin R, Trzeciak S, Schuetz P, Aird WC, Shapiro NI (2013) Biomarkers of endothelial cell activation in early sepsis. Shock 39:427–432. https://doi.org/10.1097/SHK.0b013e3182903f0d
  • Perkins GD, Roberts J, McAuley DF, Armstrong L, Millar A, Gao F, Thickett DR (2005) Regulation of vascular endothelial growth factor bioactivity in patients with acute lung injury. Thorax 60:153–158. https://doi.org/10.1136/thx.2004.027912
  • Kendall RL, Thomas KA (1993) Inhibition of vascular endothelial cell growth factor activity by an endogenously encoded soluble receptor. Proc Natl Acad Sci U S A 90:10705–10709
  • Thomas D (2006) Statistical methods in genetic epidemiology. Int J Epidemiol. USA, Oxford University Press; p. 501
  • Neupane B, Walter SD, Krueger P, Loeb M (2010) Community controls were preferred to hospital controls in a case-control study where the cases are derived from the hospital. J Clin Epidemiol 63:926–931. https://doi.org/10.1016/j.jclinepi.2009.11.006
  • Weiss ST (2001) Association studies in asthma genetics. Am J Respir Crit Care Med 164:2014–2015. https://doi.org/10.1164/ajrccm.164.11.2110043b