Sonochemistry

  1. Cairós, Carlos 1
  2. Nikitenko, Sergey I.
  3. Pflieger, Rachel
  4. Mettin, Robert
  1. 1 Universidad de La Laguna
    info

    Universidad de La Laguna

    San Cristobal de La Laguna, España

    ROR https://ror.org/01r9z8p25

Libro:
Characterization of Cavitation Bubbles and Sonoluminescence

ISSN: 2191-5407 2191-5415

ISBN: 9783030117160

Año de publicación: 2019

Páginas: 61-71

Tipo: Capítulo de Libro

DOI: 10.1007/978-3-030-11717-7_3 GOOGLE SCHOLAR

Resumen

Sonochemical splitting of thermodynamically very stable water molecule provides the evidence for drastic conditions inside the cavitation bubble. Kinetics of OH• radicals or H2O2 molecules formation during sonolysis of water can be used for quantification of acoustic power delivered to the system. This chapter focuses on the influence of several fundamental parameters, such as ultrasonic frequency, saturating gas, and some soluble nitrogen compounds on chemical reactivity of multibubble cavitation in homogeneous aqueous media in connection with the recent data on multibubble sonoluminescence.

Referencias bibliográficas

  • Richards WT, Loomis AL (1927) The chemical effects of high frequency sound waves. I. A preliminary survey. J Am Chem Soc 49:3086–3100
  • Schmitt FO, Johnson CH, O AR (1929) Oxidation promoted by ultrasonic radiation. J Am Chem Soc 51:370–375
  • Wu TY, Guo N, Teh CY, Hay JXW (2013) Advances in ultrasound technology for environmental remediation. Springer, Dordrecht
  • Gedanken A (2004) Using sonochemistry for the fabrication of nanomaterials. Ultrason Sonochem 11:47–55
  • Xu HX, Zeiger BW, Suslick KS (2013) Sonochemical synthesis of nanomaterials. Chem Soc Rev 42:2555–2567
  • Chave T, Navarro NM, Nitsche S, Nikitenko SI (2012) Mechanism of PtIV Sonochemical Reduction in formic acid media and pure water. Chem Eur J 18:3879–3885
  • Iida Y, Yasui K, Tuziuti T, Sivakumar M (2005) Sonochemistry and its dosimetry. Microchem J 80:159–164
  • Wood RJ, Lee J, Bussemaker MJ (2017) A parametric review of sonochemistry: control and augmentation of sonochemical activity in aqueous solutions. Ultrason Sonochem 38:351–370
  • Herzberg G (1979) Molecular spectra and molecular structure: constants of diatomic molecules. Van Nostrand, New York
  • Pflieger R, Brau HP, Nikitenko SI (2010) Sonoluminescence from OH(C2Σ+) and OH(A2Σ+) radicals in water: evidence for plasma formation during multibubble cavitation. Chem Eur J 16:11801–11803
  • Ebrahiminia A, Mokhtari-Dizaji M, Toliyat T (2013) Correlation between iodide dosimetry and terephthalic acid dosimetry to evaluate the reactive radical production due to the acoustic cavitation activity. Ultrason Sonochem 20:366–372
  • Ouerhani T, Pflieger R, Ben Messaoud W, Nikitenko SI (2015) Spectroscopy of sonoluminescence and sonochemistry in water saturated with N2−Ar mixtures. J Phys Chem B 119:15885–15891
  • Abeledo CA, Kolthoff IM (1931) The reaction between nitrite and iodide and its application to the iodometric titration of these anions. J Am Chem Soc 53:2893–2897
  • Couto AB, de Souza DC, Sartori ER, Jacob P, Klockow D, Neves EA (2006) The catalytic cycle of oxidation of iodide ion in the oxygen/nitrous acid/nitric oxide system and its potential for analytical applications. Anal Lett 39:2763–2774
  • Mark G, Tauber A, Rudiger LA, Schuchmann HP, Schulz D, Mues A, von Sonntag C (1998) OH-radical formation by ultrasound in aqueous solution—Part II: Terephthalate and Fricke dosimetry and the influence of various conditions on the sonolytic yield. Ultrason Sonochem 5:41–52
  • Chang CY, Hsieh YH, Cheng KY, Hsieh LL, Cheng TC, Yao KS (2008) Effect of pH on Fenton process using estimation of hydroxyl radical with salicylic acid as trapping reagent. Water Sci Technol 58:873–879
  • Milne L, Stewart I, Bremner DH (2013) Comparison of hydroxyl radical formation in aqueous solutions at different ultrasound frequencies and powers using the salicylic acid dosimeter. Ultrason Sonochem 20:984–989
  • Nikitenko SI, Le Naour C, Moisy P (2007) Comparative study of sonochemical reactors with different geometry using thermal and chemical probes. Ultrason Sonochem 14:330–336
  • Pflieger R, Chave T, Vite G, Jouve L, Nikitenko SI (2015) Effect of operational conditions on sonoluminescence and kinetics of H2O2 formation during the sonolysis of water in the presence of Ar/O2 gas mixture. Ultrason Sonochem 26:169–175
  • Mason TJ, Lorimer JP (1989) Sonochemistry, theory, applications and uses of ultrasound in chemistry. Prentice Hall, New Jersey
  • Petrier C, Jeunet A, Luche JL, Reverdy G (1992) Unexpected frequency-effects on the rate of oxidative processes induced by ultrasound. J Am Chem Soc 114:3148–3150
  • Beckett MA, Hua I (2001) Impact of ultrasonic frequency on aqueous sonoluminescence and sonochemistry. J Phys Chem A 105:3796–3802
  • Kanthale P, Ashokkumar M, Grieser F (2008) Sonoluminescence, sonochemistry (H2O2 yield) and bubble dynamics: frequency and power effects. Ultrason Sonochem 15:143–150
  • Ndiaye AA, Pflieger R, Siboulet B, Molina J, Dufreche JF, Nikitenko SI (2012) Nonequilibrium vibrational excitation of OH radicals generated during multibubble cavitation in water. J Phys Chem A 116:4860–4867
  • Navarro NM, Chave T, Pochon P, Bisel I, Nikitenko SI (2011) Effect of ultrasonic frequency on the mechanism of formic acid sonolysis. J Phys Chem B 115:2024–2029
  • Fischer CH, Hart EJ, Henglein A (1986) Ultrasonic irradiation of water in the presence of 18,18O2—isotope exchange and isotopic distribution of H2O2. J Phys Chem 90:1954–1956
  • Petrier C, Combet E, Mason T (2007) Oxygen-induced concurrent ultrasonic degradation of volatile and non-volatile aromatic compounds. Ultrason Sonochem 14:117–121
  • Wagatsuma K, Hirokawa K (1995) Effect of oxygen addition to an argon glow-discharge plasma source in atomic-emission spectrometry. Anal Chim Acta 306:193–200
  • Shultes H, Gohr H (1936) Über chemische Wirkungen der Ultraschallwellen. Angew Chem 49:420–423
  • Misik V, Riesz P (1999) Detection of primary free radical species in aqueous sonochemistry by EPR spectroscopy. In: Crum LA, Mason TJ, Reisse JL, Suslick KS (eds) Sonochemistry and sonoluminescence, pp 225–236
  • Wakeford CA, Blackburn R, Lickiss PD (1999) Effect of ionic strength on the acoustic generation of nitrite, nitrate and hydrogen peroxide. Ultrason Sonochem 6:141–148
  • Hart EJ, Fischer CH, Henglein A (1986) Isotopic exchange in the sonolysis of aqueous-solutions containing 14,14N2 and 15,15N2. J Phys Chem 90:5989–5991
  • Pflieger R, Ouerhani T, Belmonte T, Nikitenko SI (2017) Use of NH (A3Πi-X3 Σ-) sonoluminescence for diagnostics of nonequilibrium plasma produced by multibubble cavitation. Phys Chem Chem Phys 19:26272–26279
  • Nikitenko SI, Martinez P, Chave T, Billy I (2009) Sonochemical disproportionation of carbon monoxide in water: evidence for treanor effect during multibubble cavitation. Angewandte Chemie-International Edition 48:9529–9532
  • Fridman A (2008) Plasma chemistry. Cambridge University Press
  • Bigeleisen J (1965) Chemistry of isotopes. Science 147:463−471
  • Navarro NM, Pflieger R, Nikitenko SI (2014) Multibubble sonoluminescence as a tool to study the mechanism of formic acid sonolysis. Ultrason Sonochem 21:1026–1029
  • Kumari S, Keswani M, Singh S, Beck M, Liebscher E, Deymier P, Raghavan S (2011) Control of sonoluminescence signal in deionized water using carbon dioxide. Microelectron Eng 88:3437–3441
  • Henglein A (1985) Sonolysis of Carbon-dioxide, nitrous-oxide and methane in aqueous-solution, Zeitschrift Fur Naturforschung Section B-a. J Chem Sci 40:100–107
  • Harada H (1998) Sonochemical reduction of carbon dioxide. Ultrason Sonochem 5:73–77