Simulation Tools. Subchapter 10.2 Traffic Simulation

  1. Javier J. Sánchez Medina
  2. Rafael Arnay 1
  3. Antonio Artuñedo
  4. Sergio Campos-Cordobés
  5. Jorge Villagra
  1. 1 Universidad de La Laguna
    info

    Universidad de La Laguna

    San Cristobal de La Laguna, España

    ROR https://ror.org/01r9z8p25

Book:
Intelligent Vehicles

ISBN: 9780128128008

Year of publication: 2018

Pages: 404-422

Type: Book chapter

DOI: 10.1016/B978-0-12-812800-8.00010-2 GOOGLE SCHOLAR

Metrics

Cited by

  • Scopus Cited by: 0 (25-01-2023)
  • Web of Science Cited by: 1 (07-02-2023)

Abstract

Simulation can enable several developments in the field of intelligent vehicles. This chapter is divided into three main subsections. The first one deals with driving simulators. The continuous improvement of hardware performance is a well-known fact that is allowing the development of more complex driving simulators. The immersion in the simulation scene is increased by high fidelity feedback to the driver. In the second subsection, traffic simulation is explained as well as how it can be used for intelligent transport systems. Finally, it is rather clear that sensor-based perception and action must be based on data-driven algorithms. Simulation could provide data to train and test algorithms that are afterwards implemented in vehicles. These tools are explained in the third subsection.

Bibliographic References

  • Ares, J., Brazalez, A., Busturia, J.M. 2001. Tuning and validation of the motion platform washout filter parameters for a driving simulator. In: Driving Simulation Conference, pp. 295–304.
  • Carsten, (2005), Transp. Res. Part F Traffic Psychol. Behav., 8, pp. 191, 10.1016/j.trf.2005.04.004
  • Deng, W., Lee, Y.H., Zhao, A., 2008. Hardware-in-the-loop Simulation for Autonomous Driving. IEEE 2008.
  • Engen, T., Lervåg, L.-E., Moen, T., 2009. Evaluation of IVIS/ADAS using driving simulators comparing performance measures in different environments.
  • Eskandarian, A., Delaigue, P., Sayed, R., Mortazavi, A., 2008. Development and verification of a truck driving simulator for driver drowsiness studies. CISR, The George Washington University.
  • Gelau, C., Schindhelm, R., Bengler, K., Engelsberg, A., Portouli, V., Pagle, K., et al., 2004. AIDE Deliverable 4.3. 2: Recommendations for HMI Guidelines and Standards. Technical Report, AIDE, Adaptive Integrated Driver-vehicle InterfacE.
  • Gietelink, (2006), Veh. Syst. Dyn., 44, pp. 569, 10.1080/00423110600563338
  • INTERACTIVE Project, 2013. Available at <http://www.interactive-ip.eu/project.html>.
  • Jianqiang, (2010), IET Intell. Transp. Syst., 4, pp. 121, 10.1049/iet-its.2009.0041
  • Kaptein, (1996), Transp. Res. Rec. J. Transp. Res. Board, 1550, pp. 30, 10.3141/1550-05
  • Lang, B., Parkes, A.M., Cotter, S., Robbins, R., Diels, C., HIT, M.P., et al., 2007. Benchmarking and classification of CBT tools for driver training. TRAIN-ALL.
  • Liu, (1983)
  • Paul, A. Sanz, J.M., Gago, C., García, E., Díez, J.L., Blanco, R., et al., 2009. Risk analysis of road tunnel using an advanced driving simulator to assess the influence of structural parameters in tunnel safety. DSC Europe 2009, Montecarlo.
  • Paul, A., Baquero, R., Díez, J.L., Blanco, R., 2008. Analysis of integrated warning strategies for ADAS systems through high performance driving simulator. DSC Europe 2008, Monaco.
  • Peräaho, M., Keskinen, E., Hatakka, M., 2003. Driver competence in a hierarchical perspective; implications for driver education. Report to Swedish Road Administration.
  • Slob, J.J., 2008. State-of-the-Art driving simulators, a literature survey. DCT Report, 107.
  • Thomke, (1998), Res. Policy, 27, pp. 55, 10.1016/S0048-7333(98)00024-9
  • AIMSUN, 2014. Aimsun 8 Users’ Manual, TSS-Transport Simulation Systems, 2014.
  • AIMSUN, 2017. AIMSUN – the Integrated Transport Modelling Software, <http://www.aimsun.com/site/>.
  • AMITRAN, 2017. AMITRAN Project. <http://www.amitran.eu>.
  • Aramrattana, M., 2016. Modelling and simulation for evaluation of cooperative intelligent transport system functions.
  • Balmer, M., Rieser, M., Meister, K., Charypar, D., Lefebvre, N., Nagel, K., 2009. MATSim-T: architecture and simulation times.
  • Barceló, (2010), pp. 1
  • Bayarri, (2004), Transp. Res. Rec., pp. 32, 10.3141/1876-04
  • Ben-Akiva, (2002), pp. 19
  • Boero, M., et al., EMERALD- Energy ManagEment and RechArging for Efficient eLectric Car Driving Project, vol. 2017. <http://www.fp7-emerald.eu/>.
  • Castiglione, J., Bradley, M., Gliebe, J., 2015. Activity-based travel demand models: a primer.
  • Citilabs, 2017. Software for the modeling of transportation systems, <http://www.citilabs.com/>.
  • Cobos, C., Erazo, C., Luna, J., et al., 2016. Multi-objective memetic algorithm based on NSGA-II and simulated annealing for calibrating CORSIM micro-simulation models of vehicular traffic flow.
  • Coifman, B., McCord, M., Mishalani, M., Redmill, K., 2004. Surface transportation surveillance from unmanned aerial vehicles. In: Paper Presented at Proceedings of the 83rd Annual Meeting of the Transportation Research Board.
  • COLOMBO, 2017. COLOMBO Project. <http://colombo-fp7.eu>.
  • Delis, (2015), Comput. Math. Appl., 70, pp. 1921, 10.1016/j.camwa.2015.08.002
  • DRIVE, 2017. DRIVE C2X Project. <http://www.drive-c2x.eu>.
  • Flood, (2008), pp. 55
  • Gerlough, D., Huber, M., 1975. Transportation research board special report 165: traffic flow theory: a monograph. Transp. Res. Board.
  • Halati, A., Torres, J., Mikhalkin, B., 1990. Freeway simulation model enhancement and integration—FRESIM Technical Report. Federal Highway Administration, Report No. DTFH61-85-C-00094.
  • Halati, A., Lieu, H., Walker, S., 1997. CORSIM- Corridor traffic simulation model.
  • Hall, (1980), Traffic Eng. Control, pp. 21
  • Herman, R., Potts, R.B., 1900. Single lane traffic theory and experiment.
  • Horni, (2016), Ubiquity, London, pp. 9
  • iTETRIS, 2017. ITETRIS Platform. <http://www.ict-itetris.eu>.
  • Kaber, (2004), Theor. Issues Ergon. Sci., 5, pp. 113, 10.1080/1463922021000054335
  • Kosonen, I., 1999. HUTSIM-urban traffic simulation and control model: principles and applications, vol. 100.
  • Kosonen, I., 1996. HUTSIM: simulation tool for traffic signal control planning.
  • Krajzewicz, D., Bonert, M., Wagner, P., 2006. The open source traffic simulation package SUMO. RoboCup.
  • Krajzewicz, D., Hertkorn, G., Rössel, C., Wagner, P., 2002. SUMO (Simulation of Urban MObility)-an open-source traffic simulation. In: Paper presented at Proceedings of the 4th middle East Symposium on Simulation and Modelling (MESM20002).
  • Krajzewicz, (2012), Int. J. Adv. Syst. Measure., pp. 5
  • Krauß, S., 1998. Microscopic modeling of traffic flow: investigation of collision free vehicle dynamics. D L R - Forschungsberichte.
  • Macal, C.M., North, M.J., 2005. Tutorial on agent-based modeling and simulation.
  • Mahmassani, (1991), Transp. Res. Part A-Policy Pract., 25, pp. 293, 10.1016/0191-2607(91)90145-G
  • May Jr, A.D., Harmut, E.M., 1967. Non-integer car-following models. Highway Res. Rec.
  • Meng, (2012), Promet - Traffic - Traffico, 26, pp. 65, 10.7307/ptt.v26i1.1252
  • Mikhalkin, B., Payne, H.J., Isaksen, L., 1972. Estimation of speed from presence detectors.
  • Nagel, (1992), J. de Phys. I, 2, pp. 2221
  • Owen, L.E., Zhang, Y., Rao, L., McHale, G. 2000. Traffic flow simulation using CORSIM.
  • Park, (2003), Transp. Res. Rec., pp. 185, 10.3141/1856-20
  • Payne, H.J., 1979. FREFLO: a macroscopic simulation model of freeway traffic. Transp. Res. Rec.
  • Paz, A., Molano, V., Sanchez-Medina, J., 2015. Holistic calibration of microscopic traffic flow models: methodology and real world application studies.
  • Rasouli, S., 2016. Uncertainty in modeling activity-travel demand in complex urban systems. TRAIL Research School.
  • Rathi, (1990), J. Transp. Eng., 116, pp. 734, 10.1061/(ASCE)0733-947X(1990)116:6(734)
  • Rietveld, (2000), Transp. Res. Part D Transp. Environ., 5, pp. 31, 10.1016/S1361-9209(99)00022-X
  • Rilett, (2001), Transp. Res. Rec., pp. 18, 10.3141/1748-03
  • Rioux, T.W., Lee, C.E., 1977. Microscopic traffic simulation package for isolated intersections. Transp. Res. Rec.
  • Romero-Santana, S., Sanchez-Medina, J.J., Alonso-Gonzalez, I., Sanchez-Rodriguez, D., 2017. SUMO performance comparative analysis: C Vs. Python. In: Paper Presented at In International Conference on Computer Aided Systems Theory, EUROCAST2017 (in press). Springer Berlin Heidelberg. Las Palmas de Gran Canaria. Spain.
  • Russell, S.J., Norvig, P., 2002. Artificial intelligence: a modern approach (International Edition).
  • Sanchez-Medina, (2008), IEEE Trans. Evol. Comput., 12, pp. 25, 10.1109/TEVC.2007.892765
  • Sanchez-Medina, (2010), IEEE Trans. Intell. Transp. Syst., 11, pp. 132, 10.1109/TITS.2009.2034383
  • Segata, M., Joerer, S., Bloessl, B., Sommer, C., Dressler, F., Cigno, R.L., 2014. Plexe: a platooning extension for veins. In: Paper Presented at Vehicular Networking Conference (VNC), 2014 IEEE.
  • Shim, D., Chung, H., Kim, H.J., Sastry, S., 2005. Autonomous exploration in unknown urban environments for unmanned aerial vehicles. In: Paper Presented at AIAA Guidance, Navigation, and Control Conference and Exhibit.
  • Shumate, R.P., Dirksen, J.R., 1965. A simulation system for study of traffic flow behavior.
  • Silva, (2015), Transp. Res. Proc., 10, pp. 124, 10.1016/j.trpro.2015.09.062
  • Spiliopoulou, (2015), Oper. Res., 17
  • Stark, M.C., 1962. Computer simulation of traffic on nine blocks of a city street. Highway Res. Board Bull.
  • U.S. DoT, 2017.Active Transportation and Demand Management. <http://www.its.dot.gov/research_archives/atdm/index.htm>.
  • Wallace, (1998)
  • Wicks, D.A., Andrews, B.J., 1980. Development and testing of INTRAS, a microscopic freeway simulation model. Volume 2: User’s Manual. Final Report.
  • Wilkinson, (1956), Bell Syst. Technol. J., 35, pp. 421, 10.1002/j.1538-7305.1956.tb02388.x
  • Wilson, (1971), Environ. Plan. A, 3, pp. 1, 10.1068/a030001
  • Brostow, (2009), Pattern Recogn. Lett., 30, pp. 88, 10.1016/j.patrec.2008.04.005
  • Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., et al., 2016. The Cityscapes dataset for semantic urban scene understanding. In: IEEE Conference on Computer Vision and Pattern Recognition.
  • Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L., 2009. Imagenet: a large-scale hierarchical image database. In: IEEE Conference on Computer Vision and Pattern Recognition.
  • Dosovitskiy, (2016), Learning to Act by Predicting the Future. arXiv, 1611, pp. 01779
  • Enzweiler, (2009), Trans. Pattern Recogn. Mach. Anal., 31, pp. 2179, 10.1109/TPAMI.2008.260
  • Everingham, (2010), Int. J. Comput. Vis., 88, pp. 303, 10.1007/s11263-009-0275-4
  • Gaidon, A., Wang, Q., Cabon, Y., Vig., E., 2016. Virtual worlds as proxy for multi-object tracking analysis. In: IEEE Conference on Computer Vision and Pattern Recognition.
  • Geiger, (2016), Int. J. Robot. Res., 32, pp. 1231, 10.1177/0278364913491297
  • Krizhevsky, A., Sutskever, I., Hinton, G., 2012. ImageNet classification with deep convolutional neural networks. In: Annual Conference on Neural Information Processing Systems.
  • Lopez, A.M., Xu, J., Gomez, J.L., Vazquez, D., Ros, G., 2017. From virtual to real-world visual perception using domain adaptation – the DPM as example. Domain adaptation in computer vision applications, Springer Series: Advances in Computer Vision and Pattern Recognition, Edited by Gabriela Csurka.
  • Marin, J., Vazquez, D., Geronimo, D., Lopez, A.M., 2010. Learning appearance in virtual scenarios for pedestrian detection. In: IEEE Conference on Computer Vision and Pattern Recognition.
  • Mayer, N., Ilg, E., Hausser, P., Fischer, P., Cremers, D., Dosovitskiy, A., et al., 2016. A large dataset to train convolutional networks for disparity, optical flow, and scene flow estimation. In: IEEE Conference on Computer Vision and Pattern Recognition.
  • Richter, S.R., Vineet, V., Roth, S., Vladlen, K., 2016. Playing for data: ground truth from computer games. In: European Conference on Computer Vision.
  • Ros, G., Sellart, L., Materzyska, J., Vazquez, D., Lopez, A.M., 2016. The SYNTHIA dataset: a large collection of synthetic images for semantic segmentation of urban scenes. In: IEEE Conference on Computer Vision and Pattern Recognition.
  • Russell, (2008), Int. J. Comput. Vis., 77, pp. 157, 10.1007/s11263-007-0090-8
  • Saenko, K., Kulis, B., Fritz, M., Darrell, T., 2010. Adapting visual category models to new domains. In: European Conference on Computer Vision.
  • Tommasi, T., Patricia, N., Caputo, B., Tuytelaars, T., 2015. A deeper look at dataset bias. In: German Conference on Pattern Recognition.
  • Vazquez, (2014), Trans. Pattern Recogn. Mach. Anal., 36, pp. 797, 10.1109/TPAMI.2013.163
  • Xu, (2014), Trans. Pattern Recogn. Mach. Anal., 36, pp. 2367, 10.1109/TPAMI.2014.2327973
  • Xu, (2016), Int. J. Comput. Vision, 119, pp. 159, 10.1007/s11263-016-0885-6