Hongos endofitosde Artemisia: proteccion frente a Alternaria brassicicola (Schw.) Wiltsh. en cultivossusceptibles.

  1. Cristina Nita
  2. Raimundo Manuel Cabrera Pérez 1
  3. Andreea Cosoveanu
  4. Beatrice Iacomi
  1. 1 Universidad de La Laguna
    info

    Universidad de La Laguna

    San Cristobal de La Laguna, España

    ROR https://ror.org/01r9z8p25

Journal:
Revista Agricultura Tropical.

ISSN: ISSN 2517-9292

Year of publication: 2017

Volume: 3

Issue: 2

Pages: 34-39

Type: Article

Abstract

Endophytic fungi continuously demonstrate their promising candidature for“biotechnological machines” to be utilised in agriculture and medicine. Since paclitaxel,peramine and lolines, more than 20 natural products have been launched on theinternational market between 2001 and 2005 and approximately 140 are in differentdevelopment levels in all therapeutic areas. By far, studies on their potential use asseeds protectants against phytopathogenic fungi are scarce. Five crude extractsobtained from endophytic fungi, residing in different Artemisia species were tested for their bioprotection potential against Alternaria brassicicola on radish seeds. Biomass offive endophytic strains cultivated on rice was solvent extracted and their extracts wereused as treatment for the radish seeds. All extracts exhibited a high protection potentialtowards plantlets and no negative influence on their development was observed. Theextract 1053 revealed a low value of the necrosis index (1,83) in treated seeds after 30minutes of immersion compared to the control (6,67). Extract 1092 reduced the necrosisindex by 2,91 folds compared to the control. Effects of the treatment with extract 1051registered lower values for both 5 and 30 minutes incubation (1,92 and 3,15,respectively) compared to the control (6,93). Extract 1057 showed a value of 26 % of theone obtained in the control group of plantlets. Extract 1086 demonstrated a necrosisindex of 3,6, after 30 minutes of incubation compared to the value of 6,93 of the controlgroup.

Bibliographic References

  • CHOWDHARY, K. and N. KAUSHIK. 2015. Fungal endophyte diversity and bioactivity in the Indian medicinal plant Ocimum sanctum Linn. PLoS One. 10:1-25, doi:10.1371/journal.pone.0141444.
  • COSOVEANU, A.; Y. CABRERA; G. HERNANDEZ and R. CABRERA. 2014. Endophytic fungi from grapevine cultivars in Canary Islands and their activity against phytopatogenic fungi. Int J Agric Crop Sci., 7:1497-1503.
  • COSOVEANU, A.; M. HERNANDEZ; B. IACOMI-VASILESCU; X. ZHANG; S. SHU; M. WANG and R. CABRERA. 2016a. Fungi as endophytes in Chinese Artemisia spp .: juxtaposed elements of phylogeny, diversity and bioactivity. Mycosphere, 7:102-117, doi:10.5943/mycosphere/7/2/2.
  • COSOVEANU, A.; E. NITA; B. IACOMI; S. RODRIGUEZ SABINA and R. CABRERA. 2016b. Active fungal endophytes against phytopatogenic fungi - dwellers of Romanian and Canarian Artemisia spp. Sci Pap Ser B, Hortic., LX:291-298.
  • GONZALEZ COLOMA, A.; A. COSOVEANU; R. CABRERA; C. GIMENEZ MARINO and N. KAUSHIK. 2016. Fungi: Applications and Management Strategies. In: S.K. Deshmukh, J.K. Misra, J.P. Tewari, and T. Papp, eds. CRC Press. pp. 14-32.
  • IACOMI-VASILESCU, B.; H. AVENOT; N. BATAILLÉ-SIMONEAU; E. LAURENT; M. GUÉNARD and P. SIMONEAU. 2004. In vitro fungicide sensitivity of Alternaria species pathogenic to crucifers and identification of Alternaria brassicicola field isolates highly resistant to both dicarboximides and phenylpyrroles. Crop Prot., 23:481-488, doi:10.1016/j.cropro.2003.10.003.
  • KAUL, S.; S. GUPTA; M. AHMED and M.K. DHAR. 2012. Endophytic fungi from medicinal plants: A treasure hunt for bioactive metabolites. Phytochem Rev., 11:487-505, doi:10.1007/s11101-012-9260-6.
  • LI, J.Y.; G. STROBEL; J. HARPER; E. LOBKOVSKY and J. CLARDY. 2000. Cryptocin, a potent tetramic acid antimycotic from the endophytic fungus Cryptosporiopsis cf. quercina. Org Lett., 2:767-770, doi:10.1021/ol000008d.
  • SHU, S.; X. ZHAO; W. WANG; G. ZHANG; A. COSOVEANU; Y. AHN and M. WANG. 2014. Identification of a novel endophytic fungus from Huperzia serrata which produces huperzine A. World J Microbiol Biotechnol., doi:10.1007/s11274-014-1737-6.
  • TAN, R.X. and W.W. ZOU. 2001. Endophytes: a rich source of functional metabolites. Nat Prod Rep., 18:448-459, doi:10.1039/b100918o.
  • VERMA, A.; V.N. JOHRI and A. PRAKASH. 2014. Antagonistic evaluation of bioactive metabolite from endophytic fungus, Aspergillus flavipes KF671231. J Mycol., doi:http://dx.doi.org/10.1155/2014/371218.
  • XIAO, Y.; LI H-X, LI C, WANG J-X, LI J, WANG M-H, YE Y-H. 2013. Antifungal screening of endophytic fungi from Ginkgo biloba for discovery of potent anti-phytopathogenic fungicides. FEMS Microbiol Lett., 339:130-136, doi:10.1111/1574-6968.12065.
  • YAN, X.; R.A. SIKORA and J. ZHENG. 2011. Potential use of cucumber (Cucumis sativus L.) endophytic fungi as seed treatment agents against root-knot nematode Meloidogyne incognita. J Zhejiang Univ Sci B., 12:219-225, doi:10.1631/jzus.B1000165.
  • ZHANG, H.W.; Y.C. SONG and R.X. TAN. 2006. Biology and chemistry of endophytes. Nat Prod Rep., 23:753-771, doi:10.1039/b609472b.