Intact Cell Mass Spectrometry for Embryonic Stem Cell Biotyping

  1. Pečinka, Lukáš
  2. Porokh, Volodymyr
  3. Masuri, Sebastiano
  4. Elías Conde González, José 1
  5. Havel, Josef
  6. Moráň, Lukáš
  7. Pivetta, Tiziana
  8. Maria Peña-Méndez, Eladia 1
  9. Hampl, Aleš
  10. Vaňhara, Petr
  1. 1 Universidad de La Laguna
    info

    Universidad de La Laguna

    San Cristobal de La Laguna, España

    ROR https://ror.org/01r9z8p25

Livre:
Mass Spectrometry [Working Title]

Année de publication: 2020

Type: Chapitre d'ouvrage

DOI: 10.5772/INTECHOPEN.95074 GOOGLE SCHOLAR lock_openAccès ouvert editor

Résumé

Stem cells represent a unique cell type that is capable of self-renewal and differentiation into somatic cell types. Since the derivation of human embryonic stem cells and induced pluripotent stem cells, enormous potential has been recognized for disease modeling, drug development and regenerative medicine. Both embryonic stem cells and induced pluripotent stem cells possess the ability to differentiate into all three germ layers, hence they are naturally prone to respond to various differentiation stimuli. These inherent cellular fluctuations, which can result in risky phenotypic instability, must be addressed prior to introduction of these cells to human medicine, since they represent one of the major biosafety obstacles in the development of bio-industrial or clinical-grade stem cell cultures. Therefore, there is an ongoing need for novel robust, feasible and sensitive methods for determination and confirmation of the otherwise identical cells status, as well as for the detection of hidden divergences from their optimal state. A method of choice can be the intact cell mass spectrometry. Here we show how it can be applied in routine quality control of embryonic stem cell cultures.

Références bibliographiques

  • Bardot ES, Hadjantonakis AK. Mouse gastrulation: Coordination of tissue patterning, specification and diversification of cell fate. Mechanisms of Development. 2020;163:103617. DOI: 10.1016/j.mod.2020.103617
  • De Los Angeles A, Ferrari F, Xi R, Fujiwara Y, Benvenisty N, Deng H, Hochedlinger K, Jaenisch R, Lee S, Leitch HG, Lensch MW, Lujan E, Pei D, Rossant J, Wernig M, Park PJ, Daley GQ. Hallmarks of pluripotency. Nature. 2015;525:469-478. DOI: 10.1038/nature15515
  • Andrews PW. From teratocarcinomas to embryonic stem cells. Philosophical Transactions of the Royal Society B: Biological Sciences. 2002;357:405-417. DOI: 10.1038/nrg1827
  • Evans MJ, Kaufman MH. Establishment in culture of pluripotential cells from mouse embryos. Nature. 1981;292:154-156. DOI: 10.1038/292154a0
  • Martin GR. Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proceedings of the National Academy of Sciences of the United States of America. 1981;78:7634-7638. DOI: 10.1073/pnas.78.12.7634
  • Bryja V, Bonilla S, Cajanek L, Parish CL, Schwartz CM, Luo Y, Rao MS, Arenas E. An efficient method for the derivation of mouse embryonic stem cells. Stem Cells. 2006;24:844-849. DOI: 10.1634/stemcells.2005-0444
  • Conner DA. Mouse Embryonic Stem (ES) Cell Culture. Current Protocols in Molecular Biology, 2001;51: 23.3.1-23.3.6. https://doi.org/10.1002/0471142727.mb2303s51
  • Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, Jones JM. Embryonic stem cell lines derived from human blastocysts. Science. 1998;282:1145-1147. DOI: 10.1126/science.282.5391.1145
  • Holm S. Biobanking human embryonic stem cell lines: policy, ethics and efficiency. Monash Bioethics Review. 2015;33:265-276. DOI: 10.1007/s40592-015-0050-y
  • Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126(4):663-676. DOI: 10.1016/j.cell.2006.07.024
  • Stroud K, O'Doherty KC. Ethically sustainable governance in the biobanking of eggs and embryos for research. Monash Bioethics Review. 2015;33:277-294. DOI: 10.1007/s40592-015-0047-6
  • Murry CE, Keller G. Differentiation of embryonic stem cells to clinically relevant populations: lessons from embryonic development. Cell. 2008;132(4):661-680. DOI: 10.1016/j.cell.2008.02.008
  • Pouton CW, Haynes JM. Embryonic stem cells as a source of models for drug discovery. Nature Reviews Drug Discovery. 2007;6:605-616. DOI: 10.1038/nrd2194
  • Guenther MG. Transcriptional control of embryonic and induced pluripotent stem cells. Epigenomics. 2011;3:323-43. DOI: 10.2217/epi.11.15
  • Young RA. Control of the embryonic stem cell state. Cell. 2011;144:940-954. DOI: 10.1016/j.cell.2011.01.032
  • Odorico JS, Kaufman DS, Thomson JA. Multilineage differentiation from human embryonic stem cell lines. Stem Cells. 2001;19:193-204. DOI: 10.1634/stemcells.19-3-193
  • Stacey GN, Cobo F, Nieto A, Talavera P, Healy L, Concha A. The development of 'feeder' cells for the preparation of clinical grade hES cell lines: challenges and solutions. Journal of Biotechnology. 2006;125(4):583-588. DOI: 10.1016/j.jbiotec.2006.03.011
  • Desai N, Rambhia P, Gishto A. Human embryonic stem cell cultivation: historical perspective and evolution of xeno-free culture systems. Reproductive Biology and Endocrinology. 2015;13:9. DOI: 10.1186/s12958-015-0005-4
  • International Stem Cell Initiative Consortium, Akopian V, Andrews PW, Beil S, Benvenisty N, Brehm J, Christie M, Ford A, Fox V, Gokhale PJ, Healy L, Holm F, Hovatta O, Knowles BB, Ludwig TE, McKay RD, Miyazaki T, Nakatsuji N, Oh SK, Pera MF, Rossant J, Stacey GN, Suemori H. Comparison of defined culture systems for feeder cell free propagation of human embryonic stem cells. In Vitro Cellular & Developmental Biology – Animal. 2010;46:247-258. DOI: 10.1007/s11626-010-9297-z
  • Baker DE, Harrison NJ, Maltby E, Smith K, Moore HD, Shaw PJ, Heath PR, Holden H, Andrews PW. Adaptation to culture of human embryonic stem cells and oncogenesis in vivo. Nature Biotechnology. 2007;25:207-215. DOI: 10.1038/nbt1285
  • Fazeli A, Liew CG, Matin MM, Elliott S, Jeanmeure LF, Wright PC, Moore H, Andrews PW. Altered patterns of differentiation in karyotypically abnormal human embryonic stem cells. The International Journal of Developmental Biology. 2011;55:175-180. DOI: 10.1387/ijdb.103177af
  • Gokhale PJ, Au-Young JK, Dadi S, Keys DN, Harrison NJ, Jones M, Soneji S, Enver T, Sherlock JK, Andrews PW. Culture adaptation alters transcriptional hierarchies among single human embryonic stem cells reflecting altered patterns of differentiation. PLoS One. 2015;10:e0123467. DOI: 10.1371/journal.pone.0123467
  • International Stem Cell Initiative, Amps K, Andrews PW, Anyfantis G, Armstrong L, Avery S, Baharvand H, Baker J, Baker D, Munoz MB, Beil S, Benvenisty N, Ben-Yosef D, Biancotti JC, Bosman A, Brena RM, Brison D, Caisander G, Camarasa MV, Chen J, Chiao E, Choi YM, Choo AB, Collins D, Colman A, Crook JM, Daley GQ, Dalton A, De Sousa PA, Denning C, Downie J, Dvorak P, Montgomery KD, Feki A, Ford A, Fox V, Fraga AM, Frumkin T, Ge L, Gokhale PJ, Golan-Lev T, Gourabi H, Gropp M, Lu G, Hampl A, Harron K, Healy L, Herath W, Holm F, Hovatta O, Hyllner J, Inamdar MS, Irwanto AK, Ishii T, Jaconi M, Jin Y, Kimber S, Kiselev S, Knowles BB, Kopper O, Kukharenko V, Kuliev A, Lagarkova MA, Laird PW, Lako M, Laslett AL, Lavon N, Lee DR, Lee JE, Li C, Lim LS, Ludwig TE, Ma Y, Maltby E, Mateizel I, Mayshar Y, Mileikovsky M, Minger SL, Miyazaki T, Moon SY, Moore H, Mummery C, Nagy A, Nakatsuji N, Narwani K, Oh SK, Oh SK, Olson C, Otonkoski T, Pan F, Park IH, Pells S, Pera MF, Pereira LV, Qi O, Raj GS, Reubinoff B, Robins A, Robson P, Rossant J, Salekdeh GH, Schulz TC, Sermon K, Sheik Mohamed J, Shen H, Sherrer E, Sidhu K, Sivarajah S, Skottman H, Spits C, Stacey GN, Strehl R, Strelchenko N, Suemori H, Sun B, Suuronen R, Takahashi K, Tuuri T, Venu P, Verlinsky Y, Ward-van Oostwaard D, Weisenberger DJ, Wu Y, Yamanaka S, Young L, Zhou Q. Screening ethnically diverse human embryonic stem cells identifies a chromosome 20 minimal amplicon conferring growth advantage. Nature Biotechnology. 2011;29:1132-1144.
  • Wright AJ, Andrews PW. Surface marker antigens in the characterization of human embryonic stem cells. Stem Cell Research. 2009;3:3-11. DOI: 10.1038/nbt.2051
  • Ben-David U, Benvenisty N. The tumorigenicity of human embryonic and induced pluripotent stem cells. Nature Reviews Cancer. 2011;11:268-277. DOI: 10.1038/nrc3034
  • Blum B, Benvenisty N. The tumorigenicity of human embryonic stem cells. Advances in Cancer Research. 2008;100:133-158. DOI: 10.1016/S0065-230X(08)00005-5
  • Harrison NJ, Barnes J, Jones M, Baker D, Gokhale PJ, Andrews PW. CD30 expression reveals that culture adaptation of human embryonic stem cells can occur through differing routes. Stem Cells. 2009;27:1057-1065. DOI: 10.1002/stem.41
  • Harrison NJ, Baker D, Andrews PW. Culture adaptation of embryonic stem cells echoes germ cell malignancy. International Journal of Andrology. 2007;30:275-281. DOI: 10.1111/j.1365-2605.2007.00762.x
  • Almeida JL, Cole KD, Plant AL. Standards for Cell Line Authentication and Beyond. PLoS Biology. 2016;14:e1002476. DOI: 10.1371/journal.pbio.1002476
  • Kallur T, Blomberg P, Stenfelt S, Tryggvason K, Hovatta O. Quality Assurance in Stem Cell Banking: Emphasis on Embryonic and Induced Pluripotent Stem Cell Banking. Methods in Molecular Biology. 2017;1590:11-16. DOI: 10.1007/978-1-4939-6921-0_2
  • O'Shea O, Steeg R, Chapman C, Mackintosh P, Stacey GN. Development and implementation of large-scale quality control for the European bank for induced Pluripotent Stem Cells. Stem Cell Research. 2020;45:101773. DOI: 10.1016/j.scr.2020.101773
  • Wall IB, Davie N. Quality control in cell and tissue engineering. In: Salih V, editor. Standardisation in Cell and Tissue Engineering: Woodhead Publishing; 2013. p. 148-165.
  • Vanhara P, Kucera L, Prokes L, Jureckova L, Pena-Mendez EM, Havel J, Hampl A. Intact Cell Mass Spectrometry as a Quality Control Tool for Revealing Minute Phenotypic Changes of Cultured Human Embryonic Stem Cells. Stem Cells Translational Medicine. 2018;7:109-114. DOI: 10.1002/sctm.17-0107
  • Aslam B, Basit M, Nisar MA, Khurshid M, Rasool MH. Proteomics: Technologies and Their Applications. Journal of Chromatographic Science. 2017;55:182-196. DOI: 10.1093/chromsci/bmw167
  • van Belkum A, Welker M, Pincus D, Charrier JP, Girard V. Matrix-Assisted Laser Desorption Ionization Time-of-Flight Mass Spectrometry in Clinical Microbiology: What Are the Current Issues? Annals of Laboratory Medicine. 2017;37:475-483. DOI: 10.3343/alm.2017.37.6.475
  • Wang Z, Dunlop K, Long SR, Li L. Mass spectrometric methods for generation of protein mass database used for bacterial identification. Analytical Chemistry. 2002;74:3174-3182. DOI: 10.1021/ac015725f
  • Cadoni E, Vanhara P, Valletta E, Pinna E, Vascellari S, Caddeo G, Isaia F, Pani A, Havel J, Pivetta T. Mass spectrometric discrimination of phospholipid patterns in cisplatin-resistant and -sensitive cancer cells. Rapid Communications in Mass Spectrometry. 2019;33:97-106. DOI: 10.1002/rcm.8320
  • Serafim V, Shah A, Puiu M, Andreescu N, Coricovac D, Nosyrev A, Spandidos DA, Tsatsakis AM, Dehelean C, Pinzaru I. Classification of cancer cell lines using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and statistical analysis. International Journal of Molecular Medicine. 2017;40:1096-1104. DOI: 10.3892/ijmm.2017.3083
  • Ng EW, Wong MY, Poon TC. Advances in MALDI mass spectrometry in clinical diagnostic applications. Topics in Current Chemistry. 2014;336:139-175. DOI: 10.1007/128_2012_413
  • Povey JF, O'Malley CJ, Root T, Martin EB, Montague GA, Feary M, Trim C, Lang DA, Alldread R, Racher AJ, Smales CM. Rapid high-throughput characterisation, classification and selection of recombinant mammalian cell line phenotypes using intact cell MALDI-ToF mass spectrometry fingerprinting and PLS-DA modelling. Journal of Biotechnology. 2014;184:84-93. DOI: 10.1016/j.jbiotec.2014.04.028
  • Hanrieder J, Wicher G, Bergquist J, Andersson M, Fex-Svenningsen A. MALDI mass spectrometry based molecular phenotyping of CNS glial cells for prediction in mammalian brain tissue. Analytical and Bioanalytical Chemistry. 2011;401:135-147. DOI: 10.1007/s00216-011-5043-y
  • Ouedraogo R, Daumas A, Ghigo E, Capo C, Mege JL, Textoris J. Whole-cell MALDI-TOF MS: a new tool to assess the multifaceted activation of macrophages. Journal of Proteomics. 2012;75:5523-5532. DOI: 10.1016/j.jprot.2012.07.046
  • Ouedraogo R, Textoris J, Daumas A, Capo C, Mege JL. Whole-cell MALDI-TOF mass spectrometry: a tool for immune cell analysis and characterization. Methods in Molecular Biology. 2013;1061:197-209. DOI: 10.1007/978-1-62703-589-7_12
  • Ouedraogo R, Textoris J, Gorvel L, Daumas A, Capo C, Mege JL. Analysis and Characterization of Immune Cells and Their Activation Status by Whole-Cell MALDI-TOF Mass Spectrometry. Methods in Molecular Biology. 2019;2024:339-351. DOI: 10.1007/978-1-4939-9597-4_23
  • Portevin D, Pfluger V, Otieno P, Brunisholz R, Vogel G, Daubenberger C. Quantitative whole-cell MALDI-TOF MS fingerprints distinguishes human monocyte sub-populations activated by distinct microbial ligands. BMC Biotechnology. 2015;15:24. DOI: 10.1186/s12896-015-0140-1
  • Petukhova VZ, Young AN, Wang J, Wang M, Ladanyi A, Kothari R, Burdette JE, Sanchez LM. Whole Cell MALDI Fingerprinting Is a Robust Tool for Differential Profiling of Two-Component Mammalian Cell Mixtures. Journal of the American Society for Mass Spectrometry. 2019;30:344-354. DOI: 10.1007/s13361-018-2088-6
  • Zhang X, Scalf M, Berggren TW, Westphall MS, Smith LM. Identification of mammalian cell lines using MALDI-TOF and LC-ESI-MS/MS mass spectrometry. Journal of the American Society for Mass Spectrometry. 2006;17:490-499. DOI: 10.1016/j.jasms.2005.12.007
  • Povey JF, Saintas E, Aderemi AV, Rothweiler F, Zehner R, Dirks WG, Cinatl J, Jr., Racher AJ, Wass MN, Smales CM, Michaelis M. Intact-Cell MALDI-ToF Mass Spectrometry for the Authentication of Drug-Adapted Cancer Cell Lines. Cells. 2019;8:1194. DOI: 10.3390/cells8101194
  • Heap RE, Segarra-Fas A, Blain AP, Findlay GM, Trost M. Profiling embryonic stem cell differentiation by MALDI TOF mass spectrometry: development of a reproducible and robust sample preparation workflow. Analyst. 2019;144:6371-6381. DOI: 10.1039/c9an00771g
  • Wang S, Chen X, Luan H, Gao D, Lin S, Cai Z, Liu J, Liu H, Jiang Y. Matrix-assisted laser desorption/ionization mass spectrometry imaging of cell cultures for the lipidomic analysis of potential lipid markers in human breast cancer invasion. Rapid Communications in Mass Spectrometry. 2016;30:533-542. DOI: 10.1002/rcm.7466
  • Kober SL, Meyer-Alert H, Grienitz D, Hollert H, Frohme M. Intact cell mass spectrometry as a rapid and specific tool for the differentiation of toxic effects in cell-based ecotoxicological test systems. Analytical and Bioanalytical Chemistry. 2015;407:7721-7731. DOI: 10.1007/s00216-015-8937-2
  • Deulofeu M, Kolarova L, Salvado V, Maria Pena-Mendez E, Almasi M, Stork M, Pour L, Boadas-Vaello P, Sevcikova S, Havel J, Vanhara P. Rapid discrimination of multiple myeloma patients by artificial neural networks coupled with mass spectrometry of peripheral blood plasma. Scientific Reports. 2019;9:7975. DOI: 10.1038/s41598-019-44215-1
  • Valletta E, Kucera L, Prokes L, Amato F, Pivetta T, Hampl A, Havel J, Vanhara P. Multivariate Calibration Approach for Quantitative Determination of Cell-Line Cross Contamination by Intact Cell Mass Spectrometry and Artificial Neural Networks. PLoS One. 2016;11:e0147414. DOI: 10.1371/journal.pone.0147414
  • Kolarova L, Kucera L, Vanhara P, Hampl A, Havel J. Use of flower-like gold nanoparticles in time-of-flight mass spectrometry. Rapid Communications in Mass Spectrometry. 2015;29:1585-1595. DOI: 10.1002/rcm.7265
  • Kolarova L, Prokes L, Kucera L, Hampl A, Pena-Mendez E, Vanhara P, Havel J. Clusters of Monoisotopic Elements for Calibration in (TOF) Mass Spectrometry. Journal of the American Society for Mass Spectrometry. 2017;28:419-427. DOI: 10.1007/s13361-016-1567-x
  • Yilmaz S, Vandermarliere E, Martens L. Methods to Calculate Spectrum Similarity. Methods in Molecular Biology. 2017;1549:75-100. DOI: 10.1007/978-1-4939-6740-7_7
  • Williams TL, Andrzejewski D, Lay JO, Musser SM. Experimental factors affecting the quality and reproducibility of MALDI TOF mass spectra obtained from whole bacteria cells. Journal of the American Society for Mass Spectrometry. 2003;14:342-351. DOI: 10.1016/S1044-0305(03)00065-5
  • Brereton RG, Gurden SP, Groves JA. Use of eigenvalues for determining the number of components in window factor analysis of spectroscopic and chromatographic data. Chemometrics and Intelligent Laboratory Systems. 1995;27:73-87. DOI: 10.1016/0169-7439(95)80008-W
  • Meinicke P, Lingner T, Kaever A, Feussner K, Göbel C, Feussner I, Karlovsky P, Morgenstern B. Metabolite-based clustering and visualization of mass spectrometry data using one-dimensional self-organizing maps. Algorithms for Molecular Biology. 2008;3:9. DOI: 10.1186/1748-7188-3-9
  • Cejnar P, Kuckova S, Prochazka A, Karamonova L, Svobodova B. Principal component analysis of normalized full spectrum mass spectrometry data in multiMS-toolbox: An effective tool to identify important factors for classification of different metabolic patterns and bacterial strains. Rapid Communications in Mass Spectrometry. 2018;32:871-881. DOI: 10.1002/rcm.8110
  • Shao C, Tian Y, Dong Z, Gao J, Gao Y, Jia X, Guo G, Wen X, Jiang C, Zhang X. The Use of Principal Component Analysis in MALDI-TOF MS: a Powerful Tool for Establishing a Mini-optimized Proteomic Profile. American Journal of Biomedical Sciences. 2012;4:85-101. DOI: 10.5099/aj120100085
  • Worley B, Powers R. Multivariate Analysis in Metabolomics. Current Metabolomics. 2013;1:92-107. DOI: 10.2174/2213235X11301010092
  • Amato F, Lopez A, Pena-Mendez EM, Vanhara P, Hampl A, Havel J. Artificial neural networks in medical diagnosis. Journal of Applied Biomedicine. 2013;11:47-58. DOI: 10.2478/v10136-012-0031-x
  • Houska J, Pena-Mendez EM, Hernandez-Fernaud JR, Salido E, Hampl A, Havel J, Vanhara P. Tissue profiling by nanogold-mediated mass spectrometry and artificial neural networks in the mouse model of human primary hyperoxaluria 1. Journal of Applied Biomedicine. 2014;12:119-125. DOI: 10.1016/j.jab.2013.12.001
  • Porokh V, Vanhara P, Barta T, Jureckova L, Bohaciakova D, Pospisilova V, Minarikova D, Holubcova Z, Pelkova V, Soucek K, Hampl A. Soluble Cripto-1 Induces Accumulation of Supernumerary Centrosomes and Formation of Aberrant Mitoses in Human Embryonic Stem Cells. Stem Cells and Development. 2018;27:1077-1084. DOI: 10.1089/scd.2018.0017
  • Vaňhara P, Pečinka L, Moráň L, Porokh V, Havel J, Hampl A. Hledání skrytých změn fenotypu – embryonální kmenové buňky na cestě k bezpečné aplikaci. Zpravodaj Česko-slovenské biologické společnosti. 2020;30:8-19.
  • Moráň L, Hampl A, Havel J, Kotasová H, Pelková V, Porokh V, Vaňhara P. Intact-Cell mass spectrometry reveals abnormal hESCs in clinical grade stem cell cultures. Conferrence proceedings. The 7th International Stem Cell Meeting. Tel Aviv, Israel, 2019.