Fluorinated (Nano)Carbons: CFx Electrodes and CFx-Based Batteries

  1. Pischedda, Vittoria 1
  2. Guérin, Katia 2
  3. Dubois, Marc 2
  4. Sharma, Neeraj 3
  5. Radescu, Silvana 4
  1. 1 Institut Lumière Matière UMR5306 Université Lyon 1-CNRS, Université de Lyon Villeurbanne 69622 France
  2. 2 Université Clermont Auvergne, SIGMA Clermont, CNRS, ICCF 24, Avenue Blaise Pascal Aubière 63178 France
  3. 3 School of Chemistry UNSW Sydney Sydney NSW 2052 Australia
  4. 4 Departamento de Física, Instituto de Materiales y Nanotecnología MALTA Consolider Team Universidad de La Laguna La Laguna S/C Tenerife 38200 Spain
Revista:
Energy Technology

ISSN: 2194-4288 2194-4296

Año de publicación: 2021

Páginas: 2000605

Tipo: Revisión

DOI: 10.1002/ENTE.202000605 GOOGLE SCHOLAR

Otras publicaciones en: Energy Technology

Resumen

Fluorine-based chemistry is widely used in commercial battery technology, from primary batteries consisting of Li/CFx to binders for electrodes in secondary lithium-ion batteries. Fluorine-based compounds are also formed during operation for both battery configurations as discharge products such as LiF or as components of the solid electrolyte interface (SEI) layers on electrodes. Herein, the fluorinated carbons or CFx detailing the commercialization of the first Li/CFx cells are discussed- the understanding of how performance is correlated to composition or x, the various methods to synthesize CFx compounds, the correlation between the nature of the C-F bonds and electrochemical performance, the role of theoretical studies in such endeavors, the use of CFx in alternative battery chemistries and the wide range of techniques available to probe either CFx compounds individually or CFx compounds in devices under electrochemical conditions. A picture of the field from which future directions can be derived is provided

Referencias bibliográficas

  • Watanabe N., (1987), J. Power Sources, 20, pp. 87, 10.1016/0378-7753(87)80095-2
  • Tressaud A., (1994), Mol. Cryst. Liquid Cryst. Sci. Technol. Sect. A. Mol. Cryst. Liquid Cryst., 244, pp. 13, 10.1080/10587259408050077
  • Watanabe N., (1985), J. Power Sources, 14, pp. 149, 10.1016/0378-7753(85)88025-3
  • Groult H., (2018), Chem. Commun., 54, pp. 11375, 10.1039/C8CC05549A
  • Clark W. D. K., (1997), J. Power Sources, 65, pp. 101, 10.1016/S0378-7753(96)02602-X
  • Chen K., (2006), J. Power Sources, 162, pp. 837, 10.1016/j.jpowsour.2005.07.018
  • Drews J., (2001), J. Power Sources, 97, pp. 747, 10.1016/S0378-7753(01)00649-8
  • Bockris J. O., (1981), Comprehensive Treatise of Electrochemistry
  • Bruce G. C., (2009), Development of a “Half-Sized” BA-5590 with Li/CFx
  • Eaglepicher, (2020), Primary Batteries (Non-rechargeable)
  • Morita A., (1980), J. Power Sources, 5, pp. 111, 10.1016/0378-7753(80)80100-5
  • Eweka E. I., (2006), J. Power Sources, 162, pp. 841, 10.1016/j.jpowsour.2005.07.062
  • Watanabe N., (1988), Graphite Fluorides
  • Nakajima T., (1991), Graphite, Fluorides, and Carbon- Fluorine Compounds
  • Marple J. W., (1987), J. Power Sources, 19, pp. 325, 10.1016/0378-7753(87)87008-8
  • Chang Y. L., (2019), Electrochim. Acta, 320, pp. 134618, 10.1016/j.electacta.2019.134618
  • Gomadam P. M., (2007), J. Electrochem. Soc., 154, pp. A1058, 10.1149/1.2779963
  • Sideris P. J., (2014), J. Power Sources, 254, pp. 293, 10.1016/j.jpowsour.2013.12.108
  • Zhu Y. L., (2017), J. Mater. Chem. A, 5, pp. 796, 10.1039/C6TA07919A
  • Liu Y., (2018), Phys. Chem. Chem. Phys., 20, pp. 14287, 10.1039/C8CP00384J
  • Groult H., (2011), Electrochem. Commun., 13, pp. 1074, 10.1016/j.elecom.2011.06.038
  • Christensen J., (2011), J. Electrochem. Soc., 159, pp. R1, 10.1149/2.086202jes
  • Bruce P. G., (2012), Nat. Mater., 11, pp. 19, 10.1038/nmat3191
  • Rauh R. D., (1979), J. Electrochem. Soc., 126, pp. 523, 10.1149/1.2129079
  • Nagata H., (2014), J. Power Sources, 264, pp. 206, 10.1016/j.jpowsour.2014.04.106
  • Mikhaylik Y. V., (2010), ECS Trans., 25, pp. 23, 10.1149/1.3414001
  • N.Watanabe M.Fukuda US Patent 3536532 1970.
  • Touhara H., (2000), Carbon, 38, pp. 241, 10.1016/S0008-6223(99)00140-2
  • Sato Y., (2004), Carbon, 42, pp. 2897, 10.1016/j.carbon.2004.06.042
  • Watanabe N., (1980), Solid State Ion., 1, pp. 87, 10.1016/0167-2738(80)90025-9
  • Chamssedine F., (2007), Chem. Mater., 19, pp. 161, 10.1021/cm061731m
  • Yazami R., (2007), Electrochem. Commun., 9, pp. 1850, 10.1016/j.elecom.2007.04.013
  • Zhang W., (2009), Carbon, 47, pp. 2763, 10.1016/j.carbon.2009.05.035
  • Zhang W., (2009), J. Nanosci. Nanotechnol., 9, pp. 4496, 10.1166/jnn.2009.M83
  • Zhang W., (2008), Carbon, 46, pp. 1010, 10.1016/j.carbon.2008.02.029
  • Zhang W., (2008), Carbon, 46, pp. 1017, 10.1016/j.carbon.2008.02.027
  • Ahmad Y., (2012), Carbon, 50, pp. 3897, 10.1016/j.carbon.2012.04.034
  • Fulvio P. F., (2011), Chem. Mater., 23, pp. 4420, 10.1021/cm2012395
  • Leroux F., (2006), J. Mater. Chem., 16, pp. 4510, 10.1039/b610058a
  • Parmentier J., (2012), Carbon, 50, pp. 5135, 10.1016/j.carbon.2012.06.054
  • Ghimbeu C. M., (2015), Carbon, 84, pp. 567, 10.1016/j.carbon.2014.12.034
  • Hamwi A., (1996), J. Phys. Chem. Solids, 57, pp. 677, 10.1016/0022-3697(95)00332-0
  • Hamwi A., (1988), Synth. Met., 26, pp. 89, 10.1016/0379-6779(88)90338-4
  • Hamwi A., (1989), J. Power Sources, 27, pp. 81, 10.1016/0378-7753(89)80107-7
  • Dubois M., (2004), Carbon, 42, pp. 1931, 10.1016/j.carbon.2004.03.025
  • Guérin K., (2004), Chem. Mater., 16, pp. 1786, 10.1021/cm034974c
  • Mallouk T., (1983), J. Chem. Soc., Chem. Commun., 103, pp. 103, 10.1039/c39830000103
  • Mallouk T., (1985), Philos. Trans. R. Soc., 314, pp. 179
  • Hagiwara R., (1989), J. Chem. Soc., Chem. Commun., 9, pp. 573, 10.1039/c39890000573
  • Palchan I., (1983), J. Chem. Soc., Chem. Commun., 12, pp. 657, 10.1039/C39830000657
  • Palchan I., (1985), Synth. Met., 12, pp. 413, 10.1016/0379-6779(85)90144-4
  • Vaknin D., (1996), Synth. Met., 16, pp. 349, 10.1016/0379-6779(86)90172-4
  • Nakajima T., (1991), Carbon, 29, pp. 429, 10.1016/0008-6223(91)90212-2
  • Nakajima T., (1996), Carbon, 34, pp. 1595, 10.1016/S0008-6223(96)00110-8
  • Nakajima T., (2000), Electrochim. Acta, 45, pp. 1655, 10.1016/S0013-4686(99)00389-8
  • Gupta V., (2002), Mol. Cryst. Liquid Cryst., 386, pp. 25, 10.1080/713738825
  • Nakajima T., (2004), J. Power Sources, 137, pp. 80, 10.1016/j.jpowsour.2004.05.042
  • Giraudet J., (2007), J. Phys. Chem. B, 111, pp. 14143, 10.1021/jp076170g
  • Zhang W., (2010), Phys. Chem. Chem. Phys., 12, pp. 1388, 10.1039/B914853A
  • Schopf D., (2018), Mater. Des., 158, pp. 106, 10.1016/j.matdes.2018.08.021
  • Zhang S. S., (2009), J. Power Sources, 191, pp. 648, 10.1016/j.jpowsour.2009.02.007
  • Zhang S. S., (2009), J. Power Sources, 188, pp. 601, 10.1016/j.jpowsour.2008.12.007
  • Dai Y., (2014), J. Mater. Chem. A, 2, pp. 20896, 10.1039/C4TA05492J
  • Yazami R., (1990), Solid State Ionics, 40, pp. 982, 10.1016/0167-2738(90)90168-Q
  • Jayasinghe R., (2014), J. Power Sources, 253, pp. 404, 10.1016/j.jpowsour.2013.12.076
  • Ahmad Y., (2017), J. Alloys Compd., 726, pp. 852, 10.1016/j.jallcom.2017.08.001
  • Meduri P., (2013), J. Mater. Chem. A, 1, pp. 7866, 10.1039/c3ta11710c
  • Adcock J., (2012), J. Mater. Chem. A, 1, pp. 9327, 10.1039/c3ta10700k
  • Fulvio P. F., (2013), J. Mater. Chem. A, 1, pp. 9414, 10.1039/c3ta10710h
  • Peng C., (2019), Carbon, 153, pp. 783, 10.1016/j.carbon.2019.07.065
  • Damien D., (2013), RSC Adv., 3, pp. 25702, 10.1039/c3ra45377d
  • Reddy M. A., (2013), ACS Appl. Mater. Interfaces, 5, pp. 11207, 10.1021/am403438m
  • Zhou P. F., (2019), J. Power Sources, 414, pp. 210, 10.1016/j.jpowsour.2019.01.007
  • Whitacre J., (2006), J. Power Sources, 160, pp. 577, 10.1016/j.jpowsour.2006.01.045
  • Dubois M., (2012), Electrochim. Acta, 59, pp. 485, 10.1016/j.electacta.2011.11.015
  • Giraudet J., (2007), Solid State Nucl. Magn. Reson., 31, pp. 131, 10.1016/j.ssnmr.2007.02.001
  • Martin R. M., (2005), Electronic Structure (Basic Theory and Practical Methods)
  • Kohanoff J., (2006), Electronic Structure Calculations for Solids and Molecules: Theory and Computational Methods, 10.1017/CBO9780511755613
  • Hafner J., (2008), J. Comput. Chem., 29, pp. 2044, 10.1002/jcc.21057
  • Han S. S., (2010), Chem. Mater., 22, pp. 2142, 10.1021/cm903760t
  • Zboril R., (2010), Small, 24, pp. 2885, 10.1002/smll.201001401
  • Pischedda V., (2018), Carbon, 127, pp. 384, 10.1016/j.carbon.2017.10.094
  • Robinson T., (2010), Nano Lett., 10, pp. 3001, 10.1021/nl101437p
  • Withers F., (2010), Phys. Rev. B, 82, pp. 073403, 10.1103/PhysRevB.82.073403
  • Cheng S.-H., (2010), Phys. Rev. B, 81, pp. 205435, 10.1103/PhysRevB.81.205435
  • Nair R. R., (2010), Small, 6, pp. 2877, 10.1002/smll.201001555
  • Charlier J. C., (1993), Phys. Rev. B, 47, pp. 16162, 10.1103/PhysRevB.47.16162
  • Takagi Y., (2002), Phys. Rev. B, 65, pp. 12100, 10.1103/PhysRevB.65.121103
  • Sofo J. O., (2011), Phys. Rev. B, 83, pp. 081441
  • Samarakoon D. K., (2011), Small, 7, pp. 965, 10.1002/smll.201002058
  • Liang Y., (2011), MRS Proc., pp. 1370
  • Karlicky F., (2014), Ann. Phys., Lpz., 526, pp. 408, 10.1002/andp.201400095
  • Kresse G., (1996), Comput. Mater. Sci., 6, pp. 15, 10.1016/0927-0256(96)00008-0
  • Kresse G., (1996), Phys. Rev. B, 54, pp. 11169, 10.1103/PhysRevB.54.11169
  • Kresse G., (1993), Phys. Rev. B, 47, pp. 558, 10.1103/PhysRevB.47.558
  • Kresse G., (1999), Phys. Rev. B, 59, pp. 1758, 10.1103/PhysRevB.59.1758
  • Feng W., (2016), Adv. Sci., 3, pp. 1500413, 10.1002/advs.201500413
  • Liu Y. F., (2019), Nanotechnol. Rev., 8, pp. 573, 10.1515/ntrev-2019-0051
  • Tran N. T. T., (2017), Sci. Rep., 7, pp. 17858, 10.1038/s41598-017-18170-8
  • Şahin H., (2011), Phys. Rev. B, 83, pp. 115432, 10.1103/PhysRevB.83.115432
  • Ceperley M., (1980), Phys. Rev. Lett., 45, pp. 566, 10.1103/PhysRevLett.45.566
  • Blochl E., (1994), Phys. Rev. B, 50, pp. 17953, 10.1103/PhysRevB.50.17953
  • a)C. E.Junkermeier S. C.Badescu T. L.Reinecke 2013 arXiv:1302.6878;
  • Giannozzi P., (2009), J. Phys.: Condens. Matter, 21, pp. 395502
  • Pischedda V., (2017), Carbon, 114, pp. 690, 10.1016/j.carbon.2016.12.051
  • Zhou S., (2014), J. Phys. Chem. C, 118, pp. 26402, 10.1021/jp508965q
  • Grimme S., (2006), J. Comput. Chem., 27, pp. 1787, 10.1002/jcc.20495
  • Cavallari C., (2019), Carbon, 147, pp. 1, 10.1016/j.carbon.2019.02.053
  • Dresselhaus M. S., (2002), Adv. Phys., 51, pp. 1, 10.1080/00018730110113644
  • Perdew J. P., (2008), Phys. Rev. Lett., 100, pp. 136406, 10.1103/PhysRevLett.100.136406
  • Prandini G., (2018), npj Comput. Mater., 4, pp. 72, 10.1038/s41524-018-0127-2
  • Perdew J. P., (1996), Phys. Rev. Lett., 77, pp. 3865, 10.1103/PhysRevLett.77.3865
  • Grimme S., (2010), J. Chem. Phys., 132, pp. 154104, 10.1063/1.3382344
  • Pischedda V., (2019), New Insights in to the Fluorination of Carbonaceous Materials
  • Nakajima T., (2000), Advanced Inorganic Fluorides
  • Delabarre C., (2006), Carbon, 44, pp. 2543, 10.1016/j.carbon.2006.05.013
  • Giraudet J., (2006), J. Power Sources, 158, pp. 1365, 10.1016/j.jpowsour.2005.10.020
  • K.Guerin M.Dubois A.Hamwi WO20140914222014.
  • Zhang Q., (2015), Phys. Chem. Chem. Phys., 17, pp. 22504, 10.1039/C5CP03217B
  • Tarascon J.-M., (2001), Nature, 414, pp. 359, 10.1038/35104644
  • Nagaura T., (1990), Prog. Batteries Sol. Cells, 9, pp. 209
  • Wang R., (2017), Nanoscale Res. Lett., 12, pp. 1, 10.1186/s11671-016-1773-2
  • Chen H., (2018), Chem. Rev., 118, pp. 8936, 10.1021/acs.chemrev.8b00241
  • Komaba S., (2011), ACS Appl. Mater. Interfaces, 3, pp. 4165, 10.1021/am200973k
  • Aurbach D., (2000), J. Power Sources, 89, pp. 206, 10.1016/S0378-7753(00)00431-6
  • Peled E., (2017), J. Electrochem. Soc., 164, pp. A1703, 10.1149/2.1441707jes
  • Goodenough J. B., (2010), Chem. Mater., 22, pp. 587, 10.1021/cm901452z
  • Zhang S. S., (2009), J. Power Sources, 188, pp. 532, 10.1016/j.jpowsour.2008.12.030
  • Nagasubramanian G., (2007), J. Power Sources, 165, pp. 630, 10.1016/j.jpowsour.2006.10.037
  • Rangasamy E., (2014), J. Am. Chem. Soc., 136, pp. 6874, 10.1021/ja5026358
  • Reddy M. A., (2011), J. Mater. Chem., 21, pp. 17059, 10.1039/c1jm13535j
  • Grenier A., (2017), J. Phys. Chem. C, 121, pp. 24962, 10.1021/acs.jpcc.7b07988
  • Matsuo Y., (2020), Electrochem. Commun., 110, pp. 106626, 10.1016/j.elecom.2019.106626
  • Lewandowski A., (2016), J. Solid State Electrochem., 20, pp. 3367, 10.1007/s10008-016-3305-5
  • Li Y. Y., (2019), J. Mater. Chem. A, 7, pp. 7128, 10.1039/C8TA12074A
  • Palomares V., (2013), Energy Environ. Sci., 6, pp. 2312, 10.1039/c3ee41031e
  • Liu W., (2014), ACS Appl. Mater. Interfaces, 6, pp. 2209, 10.1021/am4051348
  • Liu W., (2016), J. Phys. Chem. C, 120, pp. 25203, 10.1021/acs.jpcc.6b07126
  • Shao Y. J., (2016), Chem. Mater., 28, pp. 1026, 10.1021/acs.chemmater.5b03762
  • Liu W., (2018), Chem. Commun., 54, pp. 2341, 10.1039/C7CC08349A
  • Liu W., (2020), J. Colloid Interface Sci., 565, pp. 70, 10.1016/j.jcis.2020.01.011
  • Wang J., (2020), J. Mater. Chem. A, 8, pp. 6105, 10.1039/D0TA00093K
  • Jiang C., (2020), Nano Energy, 70, pp. 104552, 10.1016/j.nanoen.2020.104552
  • Yoo H. D., (2013), Energy Environ. Sci., 6, pp. 2265, 10.1039/c3ee40871j
  • Giraudet J., (2007), J. Power Sources, 173, pp. 592, 10.1016/j.jpowsour.2007.04.067
  • Miao X. W., (2016), Electrochim. Acta, 210, pp. 704, 10.1016/j.electacta.2016.05.198
  • Cheng Y. W., (2014), Chem. Commun., 50, pp. 9644, 10.1039/C4CC03620D
  • Vatsala Rani J., (2011), J. Electrochem. Soc., 158, pp. A1031, 10.1149/1.3610991
  • Das S. K., (2017), J. Mater. Chem. A, 5, pp. 6347, 10.1039/C7TA00228A
  • Levitin G., (2002), Electrochem. Solid-State Lett., 5, pp. A160, 10.1149/1.1481797
  • Vatsala Rani J., (2013), J. Electrochem. Soc., 160, pp. A1781, 10.1149/2.072310jes
  • Badway F., (2003), J. Electrochem. Soc., 150, pp. A1318, 10.1149/1.1602454
  • Wang F., (2011), J. Am. Chem. Soc., 133, pp. 18828, 10.1021/ja206268a
  • Reddy M. A., (2018), RSC Adv., 8, pp. 36802, 10.1039/C8RA07378C
  • Reddy M. A., (2013), Adv. Energy Mater., 3, pp. 308, 10.1002/aenm.201200788
  • Breitung B., (2013), Beilstein J. Nanotechnol., 4, pp. 705, 10.3762/bjnano.4.80
  • Reddy M. A., (2016), Energy Technol., 4, pp. 201, 10.1002/ente.201500358
  • Prakash A. S., (2010), Chem. Mater., 22, pp. 2857, 10.1021/cm100071z
  • Du G., (2011), Adv. Funct. Mater., 21, pp. 3990, 10.1002/adfm.201100846
  • Wang Y., (2018), Mater. Today Energy, 10, pp. 249, 10.1016/j.mtener.2018.09.014
  • Giraudet J., (2006), J. Phys. Chem. Solids, 67, pp. 1100, 10.1016/j.jpcs.2006.01.030
  • Kita Y., (1979), J. Am. Chem. Soc., 101, pp. 3832, 10.1021/ja00508a020
  • Touhara H., (1987), Z. Anorg. Allg. Chem., 544, pp. 7, 10.1002/zaac.19875440102
  • Panich A. M., (1999), Synth. Met., 100, pp. 169, 10.1016/S0379-6779(98)01512-4
  • Krawietz T. R., (1998), Chem. Commun., 19, pp. 2152
  • DeSilva J., (2011), J. Power Sources, 196, pp. 5659, 10.1016/j.jpowsour.2011.02.036
  • Frąckowiak E., (1996), Carbon Fluoride Cathode for Lithium Cells, 10.1007/978-94-009-1643-2_6
  • Gupta V., (2003), J. Fluorine Chem., 120, pp. 143, 10.1016/S0022-1139(02)00323-8
  • Gupta V., (2001), J. Fluorine Chem., 110, pp. 145, 10.1016/S0022-1139(01)00422-5
  • Dahn J. R., (1991), Phys. Rev. B, 44, pp. 9170, 10.1103/PhysRevB.44.9170
  • d)V.Gupta T.Nakajima Y.Ohzawa B.Žemva 2010;
  • Sosunov A. V., (2019), New J. Chem., 43, pp. 12892, 10.1039/C9NJ02956G
  • Ahmad Y., (2013), J. Phys. Chem. C, 117, pp. 13564, 10.1021/jp401579u
  • Asanov I. P., (1998), J. Struct. Chem., 39, pp. 928, 10.1007/BF02903607
  • Nikolenko Y. M., (2002), XPS Studies of Graphite Compounds with Fluorine and Pentafluorides
  • Seki K., (2001), Mol. Cryst. Liquid Cryst. Sci. Technol. Sect. A. Mol. Cryst. Liquid Cryst., 355, pp. 247, 10.1080/10587250108023664
  • Yoshida K., (2020), J. Power Sources, 445, pp. 227, 10.1016/j.jpowsour.2019.227320
  • Cavallari C., (2020), J. Phys. Chem. C, 124, pp. 24747, 10.1021/acs.jpcc.0c06860
  • Sharma N., (2012), J. Solid State Electrochem., 16, pp. 1849, 10.1007/s10008-011-1567-5
  • Sharma N., (2015), ChemSusChem, 8, pp. 2826, 10.1002/cssc.201500152
  • Goonetilleke D., (2019), Curr. Opin. Electrochem., 15, pp. 18, 10.1016/j.coelec.2019.03.011
  • Boltalina O. V., (2016), New Fluorinated Carbons: Fundamentals and Applications
  • Zhang S. S., (2009), J. Power Sources, 187, pp. 233, 10.1016/j.jpowsour.2008.10.076
  • Nagasubramanian G., (2007), J. Power Sources, 170, pp. 179, 10.1016/j.jpowsour.2007.04.023
  • Rodriguez M. A., (2007), J. Appl. Crystallogr., 40, pp. 1097, 10.1107/S0021889807042045
  • Zhong G. M., (2019), J. Mater. Chem. A, 7, pp. 19793, 10.1039/C9TA06800G
  • Zou R., (2017), J. Mater. Chem. A, 5, pp. 20072, 10.1039/C7TA05768G