RIM-ONE DL: A Unified Retinal Image Database for Assessing Glaucoma Using Deep Learning

  1. Silvia Alayon 1
  2. Tinguaro Diaz-Aleman 2
  3. Denisse Angel-Pereira 2
  4. Jose Sigut 1
  5. Rafael Arnay 1
  6. Francisco José Fumero Batista 1
  1. 1 Department of Computer Engineering and Systems, University of La Laguna
  2. 2 Servicio de Oftalmología, Hospital Universitario de Canarias
Image Analysis & Stereology

ISSN: 1854-5165

Year of publication: 2020

Volume: 39

Issue: 3

Pages: 161-167

Type: Article

Export: RIS
DOI: 10.5566/ias.2346 GOOGLE SCHOLAR lock_openOpen access editor

Bibliographic References

  • Borkar TS, Karam LJ (2019). DeepCorrect: Correcting DNN Models Against Image Distortions. IEEE T Image Process 28:6022–34.
  • Decenciere E, Zhang X, Cazuguel G, Lay B, Cochener ` B, Trone C, Gain P, Ordonez R, Massin P, Erginay A, Charton B, Klein JC (2014). Feedback on a publicly distributed database: the Messidor database. Image Anal Stereol 33:231–4.
  • Diaz-Pinto A, Morales S, Naranjo V, Kohler T, Mossi ¨JM, Navea A (2019). CNNs for automatic glaucoma assessment using fundus images: an extensive validation. Biomed Eng Online 18:1–19.
  • Fumero F, Alayon S, Sanchez JL, Sigut J, GonzalezHernandez M (2011). RIM-ONE: An open retinal image database for optic nerve evaluation. In: 2011 24th International Symposium on ComputerBased Medical Systems (CBMS).
  • Fumero F, Sigut J, Alayon S, Gonzalez-Hernandez M, Gonzalez de la Rosa M (2015). Interactive tool and database for optic disc and cup segmentation of stereo and monocular retinal fundus images. In: Short communications proceedings. Plzen, Czech Republic: Vaclav Skala - UNION Agency. ´
  • Holm S, Russell G, Nourrit V, McLoughlin N (2017). DR HAGIS - a fundus image database for the automatic extraction of retinal surface vessels from diabetic patients. J Med Imaging Bellingham 4:1– 11.
  • Odstrcilik J, Kolar R, Budai A, Hornegger J, Jan J, Gazarek J, Kubena T, Cernosek P, Svoboda O, Angelopoulou E (2013). Retinal vessel segmentation by improved matched filtering: evaluation on a new high-resolution fundus image database. IET Image Process 7:373–83.
  • Orlando JI, Fu H, Barbosa Breda J, van Keer K, Bathula DR, Diaz-Pinto A, Fang R, Heng PA, Kim J, Lee J, Lee J, Li X, Liu P, Lu S, Murugesan B, Naranjo V, Phaye SSR, Shankaranarayana SM, Sikka A, Son J, van den Hengel A, Wang S, Wu J, Wu Z, Xu G, Xu Y, Yin P, Li F, Zhang X, Xu Y, Bogunovic H (2020). REFUGE Challenge: ´ A unified framework for evaluating automated methods for glaucoma assessment from fundus photographs. Med Image Anal 59:101570.
  • Orlando JI, van Keer K, Barbosa Breda J, Blaschko MB, Blanco P, Bulant CA (2018). Towards a glaucoma risk index based on simulated hemodynamics from fundus images. In: Frangi AF, Schnabel JA, Davatzikos C, Alberola-Lopez C, Fichtinger G, eds., Medical Image Computing and Computer Assisted Intervention – MICCAI 2018, Lecture Notes in Computer Science. Springer International Publishing, 65–73.
  • Sivaswamy J, Krishnadas S, Datt Joshi G, Jain M, Syed Tabish A (2014). Drishti-GS: Retinal image dataset for optic nerve head (ONH) segmentation. In: 2014 IEEE 11th International Symposium on Biomedical Imaging (ISBI).
  • Son J, Bae W, Kim S, Park SJ, Jung KH (2018). Classification of Findings with Localized Lesions in Fundoscopic Images Using a Regionally Guided CNN. In: Stoyanov D, Taylor Z, Ciompi F, Xu Y, Martel A, Maier-Hein L, Rajpoot N, van der Laak J, Veta M, McKenna S, Snead D, Trucco E, Garvin MK, Chen XJ, Bogunovic H, eds., Computational Pathology and Ophthalmic Medical Image Analysis, Lecture Notes in Computer Science. Springer International Publishing, 176–84.
  • Tham YC, Li X, Wong TY, Quigley HA, Aung T, Cheng CY (2014). Global prevalence of glaucoma and projections of glaucoma burden through 2040: a systematic review and metaanalysis. Ophthalmology 121:2081–90.
  • Trucco E, Ruggeri A, Karnowski T, Giancardo L, Chaum E, Hubschman JP, Al-Diri B, Cheung CY, Wong D, Abramoff M, Lim G, Kumar D, Burlina ` P, Bressler NM, Jelinek HF, Meriaudeau F, Quellec G, Macgillivray T, Dhillon B (2013). Validating retinal fundus image analysis algorithms: issues and a proposal. Invest Ophth Vis Sci 54:3546–59.
  • Zhang Z, Yin FS, Liu J, Wong WK, Tan NM, Lee BH, Cheng J, Wong TY (2010). ORIGAlight: An online retinal fundus image database for glaucoma analysis and research. In: 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology