Cambios en la variabilidad temporal de la conectividad funcional electroencefalográfica durante el envejecimiento

  1. Almudena González Brito
  2. Guzmán Alba Lasso
  3. Julián Jesús González González
Journal:
EJIHPE: European Journal of Investigation in Health, Psychology and Education

ISSN: 2174-8144

Year of publication: 2017

Volume: 7

Issue: 1

Pages: 5-15

Type: Article

Export: RIS
DOI: 10.30552/ejihpe.v7i1.189 DIALNET GOOGLE SCHOLAR lock_openOpen access editor

Metrics

Índice Dialnet de Revistas

  • Year 2017
  • Journal Impact: 0.653
  • Field: EDUCACIÓN Quartile: C1 Rank in field: 34/234
  • Field: PSICOLOGÍA Quartile: C2 Rank in field: 30/119

CIRC

  • Social Sciences: C

Abstract

This work is aimed at investigating changes in the temporal variability of EEG functional connectivity (FC) during agin. The variability in the FC has been linked to cognitive performance. The study was carried out in two groups of healthy subjects: one of 10 adults between 50-65 years old and another of 15 subjects ranging 66-85 years. EEG recordings were made at rest using 16 monopolar channels: under eyes closed (EC) and under hyperventilation (HV). The cortical FC between all EEG channel pairs was estimated from an index (L) of nonlinear generalized synchronization. For each subject and condition, the global connectivity (GC) of each area/channel with the rest of them was calculated, then the GC average and the GC temporal variability (TVC) of such connectivities was computed from the GC mean and standard deviation of successive EEG recordings respectively. The changes with age and condition of GC and TVC of each cortical area were estimated via a MANOVA. We found that the GC does not change with age during OC or HV, but the TVC of all cortical areas is significantly higher (p<0.01) for subjects under 65 and mainly for the central, temporal and parietal areas (p<0.01). It is concluded that TVC decreasing with aging may be related to cognitive performance deficits.

Bibliographic References

  • Citas Alba, G., González, A., y González, J.J. (2016). Modificaciones durante el envejecimiento de la sincronización electroencefalográfica (EEG) cortical bajo estimulación visual. European Journal of Investigation in Health, Psychology and Education, 6(1), 15-26.
  • Andrews-Hanna, J.R., Snyder, A.Z, Vincent, J.L, Lustig, C., Head, D., Raichle M.E., y Buckner, R.L. (2007). Disruption of large-scale brain systems in advanced aging. Neuron, 56(5), 924-935.
  • Barry, R.J., Clarke, A.R., Johnstone, S.J., Magee, C.A., y Rushby, J.A. (2007). EEG differences between eyes-closed and eyes-open resting conditions. Clinical Neurophysiology, 118(12), 2765-2773.
  • Barttfeld, P., Petroni, A., Baéz, S., Urquina, H., Sigman, M., Cetkovich, M., Torralva, T., Torrente, F., Lischinsky, A., Castellanos, X., Manes, F., y Ibañez, A. (2014). Functional connectivity and temporal variability of brain connections in adults with attention deficit/hyperactivity disorder and bipolar disorder. Neuropsychobiology, 69(2), 65-75.
  • Botcharova, M., Farmer, S.F., y Berthouze, L. (2014). Markers of criticality in phase synchronization. Frontiers in Systems Neuroscience, 8, 176.
  • Buckner, R.L., Sepulcre, J., Talukdar, T., Krienen, F.M., Liu, H., Hedden, T., Andrews-Hanna, J.R., Sperling, R.A., y Johnson, K.A. (2009). Cortical hubs revealed by intrinsic functional connectivity: mapping, assessment of stability, and relation to Alzheimer's disease. Journal of Neuroscience, 29(6), 1860-1873.
  • Bullmore, E., y Sporns, O. (2009). Complex brain networks: graph theoretical analysis of structural and functional systems. Nature Reviews Neuroscience, 10(3), 186-198.
  • Friston, K.J. (2011). Functional and effective connectivity: a review. Brain Connectivity, 1(1), 13- 36.
  • Goh, J.O. (2011). Functional Dedifferentiation and Altered Connectivity in Older Adults: Neural Accounts of Cognitive Aging. Aging Disease, 2(1), 30-48.
  • González, J.J., y González, A. (2015). Valoración del envejecimiento a partir de la conectividad funcional cerebral estimada mediante medidas de sincronización electroencefalográficas. European Journal of Investigation in Health, Psychology and Education, 5(1), 121-131.
  • Grady, C.L., Protzner, A.B., Kovacevic, N., Strother, S.C., Afshin-Pour, B., Wojtowicz, M., Anderson, J.A.E., Churchill, N., y McIntosh, A.R. (2010). A multivariate analysis of age-related differences in default mode and task-positive networks across multiple cognitive domains. Cerebral Cortex, 20(6), 1432-1447.
  • Hufner, K., Stephan, T., Flanagin, V. L., Deutschlander, A., Stein, A., Kalla, R., Dera, T., Fesl, G., Jahn, K., Strupp, M., y Brandt, T. (2009). Differential effects of eyes open or closed in darkness on brain activation patterns in blind subjects. Neuroscience Letters, 466(1), 30- 34.
  • Johnson, K.A., Robertson, I.H., Barry, E., Mulligan, A., Daibhis, A., Daly, M., Watchorn, A., Keavey, M., Lambert, D., McDonnell, C., Hawi, Z., y Bellgrove, MA. (2008). Impaired conflict resolution and alerting in children with ADHD: evidence from the Attention Network Task (ANT). Journal of Child Psychology and Psychiatry, 49(12), 1339-1347.
  • Kikuchi, M., Wada, Y., Takeda, T., Oe, H., Hashimoto, T., y Koshino, Y. (2002). EEG harmonic responses to photic stimulation in normal aging and Alzheimer's disease: differences in interhemispheric coherence. Journal Electroencephalography and Clinical Neurophysiology, 113(7), 1045-1051.
  • Kitzbichler, M.G., Smith, M.L., Christensen, S.R., y Bullmore, E. (2009). Broadband criticality of human brain network synchronization. PLoS Computational Biology, 5(3). e1000314.
  • Kofler, M.J., Rapport, M.D., Sarver, D.E., Raiker, J.S., Orban, S.A., Friedman, L.M., y Kolomeyer, E.G. (2013). Reaction time variability in ADHD: a meta-analytic review of 319 studies. Clinical Psychology Review, 33(6), 795-811.
  • Li, S.C., y Sikstrom, S. (2002). Integrative neurocomputational perspectives on cognitive aging, neuromodulation, and representation. Neuroscience &amp; Biobehavioral Reviews, 26(7), 795-808.
  • Onoda, K., y Yamaguchi, S. (2013). Small-worldness and modularity of the resting-state functional brain network decrease with aging. Neuroscience Letters, 556, 104-108.
  • Park, D.C., Polk, T.A., Mikels, J.A., Taylor, S.F., y Marshuetz, C. (2001). Cerebral aging: integration of brain and behavioral models of cognitive function. Dialogues in Clinical Neuroscience, 3(3), 151-165.
  • Ramón, C., y Holmes, M.D. (2013). Stochastic Behavior of Phase Synchronization Index and Cross-Frequency Couplings in Epileptogenic Zones during Interictal Periods Measured with Scalp dEEG. Frontiers in Neurology, 4, 57.
  • Rossini, P.M., Rossi, S., Babiloni, C., y Polich, J. (2007). Clinical neurophysiology of aging brain: from normal aging to neurodegeneration. Progress in Neurobiology, 83(6), 375-400.
  • Schelter, B., Winterhalder, M., Eichler, M., Peifer, M., Hellwig, B., Guschlbauer B, Lücking, C.H., Dahlhaus, R., y Timmer, J. (2006). Testing for directed influences among neural signals using partial directed coherence. Journal of Neuroscience Methods, 152(1-2), 210-219.
  • Toth, B., Kardos, Z., File, B., Boha, R., Stam, C.J., y Molnar, M. (2014). Frontal midline theta connectivity is related to efficiency of WM maintenance and is affected by aging. Neurobiology of Learning and Memory, 114, 58-69.
  • Vecchio, F., Miraglia, F., Marra, C., Quaranta, D., Vita, M.G., Bramanti, P., y Rossini, P.M. (2014). Human brain networks in cognitive decline: a graph theoretical analysis of cortical connectivity from EEG data. Journal of Alzheimer’s Disease, 41(1), 113-127.
  • Vysata, O., Kukal, J., Prochazka, A., Pazdera, L., Simko, J., y Valis, M. (2014). Age-related changes in EEG coherence. Neurologia i Neurochirurgia Polska, 48(1), 35-38.
  • Zhu, C., Guo, X., Jin, Z., Sun, J., Qiu, Y., Zhu, Y., y Tong, S. (2011). Influences of brain development and ageing on cortical interactive networks. Clinical Neurophysiology, 122(2), 278-283.