Fatty acid profiles and omega-3 LC-PUFA biosynthesis capacity of three dual purpose chicken breeds

  1. Dorta-Guerra, Roberto
  2. Castro, Almudena
  3. Rodríguez, Covadonga
  4. Torres, Alexandr
  5. Acosta, Nieves G.
  6. Pérez, José A.
  7. Rolo, Carla
  1. 1 Universidad de La Laguna
    info

    Universidad de La Laguna

    San Cristobal de La Laguna, España

    ROR https://ror.org/01r9z8p25

  2. 2 Instituto Canario de Investigaciones Agrarias
    info

    Instituto Canario de Investigaciones Agrarias

    San Cristóbal de La Laguna, España

Revista:
Journal of Food Composition and Analysis

ISSN: 0889-1575

Año de publicación: 2021

Páginas: 104005

Tipo: Artículo

DOI: 10.1016/J.JFCA.2021.104005 GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: Journal of Food Composition and Analysis

Objetivos de desarrollo sostenible

Resumen

Westernized societies ingest an unhealthy high dietary omega-6/omega-3 fatty acid ratio of 20:1 or even higher. Seafood is the primary source of omega-3 long chain polyunsaturated fatty acids (LC-PUFA) for humans, mainly eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), which are involved in a plethora of physiological and health-related processes. However, the production of marine organisms with aquafeed formulations based on marine ingredients leads to serious environmental impacts on global pelagic fish resources, resulting in an unsustainable activity. The present study aims to gain further insight into the metabolism of fatty acids in chicken as a potential supply for omega-3 LC-PUFA. To this purpose, lipid classes and fatty acid profiles of thighs and hepatocytes, and the modification of [1-14C]18:3n-3 by hepatocytes isolated from three dual-purpose chicken breeds adapted to free-range culture systems were determined. Arachidonic acid highly accumulated in thighs meat (7.16-8.79%) despite being barely supplied in the diet, with DHA (1.22-1.71%) and n-3 docosapentaenoic acid (DPA, 22:5n-3; 1.02-1.14%) being also relevant. Our experimental design with radiolabeled fatty acids was validated for the first time in terrestrial vertebrates. Chicken hepatocytes incubated with [1-14C]18:3n-3 produced a wide variety of C18-C24 intermediates demonstrating that the set of fatty acyl desaturases and elongases enzymes necessary to metabolize dietary C18 precursors are active for the production of LC-PUFA, including EPA, n-3 DPA and DHA.

Referencias bibliográficas

  • Akif Boz, (2019), Poult. Sci., 98, pp. 3067, 10.3382/ps/pez125
  • Alagawany, (2019), Animals, 9, pp. 573, 10.3390/ani9080573
  • Bell, (2009), pp. 211
  • Calder, (2007), Br. J. Nutr., 98, pp. 451, 10.1017/S0007114507761779
  • Calder, (2018), Proc. Nutr. Soc., 77, pp. 52, 10.1017/S0029665117003950
  • Castellini, (2006), Ital. J. Anim. Sci., 5, pp. 29, 10.4081/ijas.2006.29
  • Castellini, (2008), World’s Poult. Sci. J., 64, pp. 500, 10.1017/S0043933908000172
  • Castro, (2012), PLoS ONE, 7, 10.1371/journal.pone.0031950
  • Castro, (2016), Prog. Lipid Res., 62, pp. 25, 10.1016/j.plipres.2016.01.001
  • Christie, (2010)
  • Domenichiello, (2015), Lipid Res., 59, pp. 54, 10.1016/j.plipres.2015.04.002
  • Drouin, (2019), Biochimie, 159, pp. 36, 10.1016/j.biochi.2019.01.022
  • Ebeid, (2008), Animal, 2, pp. 84, 10.1017/S1751731107000882
  • European Food Safety Authority (EFSA)
  • FAO, (2010), FAO Food and Nutrition Paper, 91, pp. 166
  • FAO, (2018), pp. 233
  • Fayet-Moore, (2015), Nutrients, 7, pp. 8602, 10.3390/nu7105413
  • Folch, (1957), J. Biol. Chem., 226, pp. 497, 10.1016/S0021-9258(18)64849-5
  • Føre, (2018), Biosyst. Eng., 173, pp. 176, 10.1016/j.biosystemseng.2017.10.014
  • Galindo, (2020), Aquaculture, 530, pp. 735761, 10.1016/j.aquaculture.2020.735761
  • Geay, (2015), Lipids, 50, pp. 1219, 10.1007/s11745-015-4079-8
  • Gregory, (2013), J. Nutr., 143, pp. 12, 10.3945/jn.112.170290
  • Gregory, (2014), J. Nutr., 144, pp. 1234, 10.3945/jn.114.194159
  • Hicks, (2019), Nature, 574, pp. 95, 10.1038/s41586-019-1592-6
  • Huang, (2020), Crit. Rev. Food Sci. Nutr., 10.1080/10408398.2020.1777932
  • Hussein, (2013), Int. J. Pharmacol. Pharmaceut. Sci., 5, pp. 38
  • International Society for the Study of Fatty Acids and Lipids (ISSFAL), (2004), pp. 22 pp.
  • Jaturasitha, (2008), Poult. Sci., 87, pp. 160, 10.3382/ps.2006-00398
  • Jin, (2019), J. Sci. Food Agricult., 100, pp. 665, 10.1002/jsfa.10062
  • Kok, (2020), Aquaculture, 528, pp. 735474, 10.1016/j.aquaculture.2020.735474
  • Konar, (2019), Resour. Conserv. Recycl., 151, pp. 104456, 10.1016/j.resconrec.2019.104456
  • Konieczka, (2017), Anim.Feed Sci. Technol., 223, pp. 42, 10.1016/j.anifeedsci.2016.10.023
  • Lee, (2016), Nutrients, 8, pp. 23, 10.3390/nu8010023
  • Leveille, (1975), Poult. Sci., 54, pp. 1075, 10.3382/ps.0541075
  • Longo, (2019), Conserv. Biol., 33, pp. 832, 10.1111/cobi.13295
  • Lowry, (1951), J. Biol. Chem., 193, pp. 265, 10.1016/S0021-9258(19)52451-6
  • Lund, (2020), Aquaculture, 531, pp. 735858, 10.1016/j.aquaculture.2020.735858
  • Moallem, (2018), J. Dairy Sci., 101, pp. 8641, 10.3168/jds.2018-14772
  • Muth, (2018), Org. Agr., 8, pp. 57, 10.1007/s13165-016-0173-3
  • National Health and Medical Research Council (NHMRC), (2006)
  • Oboh, (2017), Sci. Rep., 7, pp. 3889, 10.1038/s41598-017-04288-2
  • O’Hea, (1968), Comp. Biochem. Physiol., 26, pp. 111, 10.1016/0010-406X(68)90317-4
  • Olsen, (1989), J. Exp. Mar. Biol. Ecol., 129, pp. 189, 10.1016/0022-0981(89)90056-7
  • Paszkiewicz, (2020), Animals, 10, pp. 533, 10.3390/ani10030533
  • Patterson, (2012), J. Nutr. Metab., pp. 539426
  • Pérez, (2014), Eur. J. Lipid Sci. Technol., 116, pp. 571, 10.1002/ejlt.201300457
  • Reis, (2016), Aquaculture, 450, pp. 67, 10.1016/j.aquaculture.2015.07.012
  • Reis, (2019), Aquaculture, 500, pp. 264, 10.1016/j.aquaculture.2018.10.021
  • Riediger, (2009), J. Am. Diet. Assoc., 109, pp. 668, 10.1016/j.jada.2008.12.022
  • Rodrı́guez, (2002), Comp. Biochem. Physiol. Part B, 132, pp. 559, 10.1016/S1096-4959(02)00072-6
  • Sargent, (1999), Proc. Nutr. Soc., 58, pp. 377, 10.1017/S0029665199001366
  • Shrago, (1976), Am. J. Clin. Nutr., 29, pp. 540, 10.1093/ajcn/29.5.540
  • Simopoulos, (2002), Biomed. Pharmacother., 56, pp. 365, 10.1016/S0753-3322(02)00253-6
  • Simopoulos, (2004), Food Rev. Int., 20, pp. 77, 10.1081/FRI-120028831
  • Simopoulos, (2016), Nutrients, 8, pp. 128, 10.3390/nu8030128
  • Sioen, (2017), Ann. Nutr. Metab., 70, pp. 39, 10.1159/000456723
  • Siriwardhana, (2012), vol. 65, pp. 211
  • Sirri, (2011), Animal, 5, pp. 312, 10.1017/S175173111000176X
  • Sprecher, (2000), Biochim. Biophys. Acta - Mol. Cell Biol. Lipids, 1486, pp. 219, 10.1016/S1388-1981(00)00077-9
  • Tacon, (2013), Rev. Fish. Sci., 21, pp. 22, 10.1080/10641262.2012.753405
  • Tacon, (2009), Rev. Fish. Sci., 18, pp. 94, 10.1080/10641260903325680
  • Tallima, (2018), J. Adv. Res., 11, pp. 33, 10.1016/j.jare.2017.11.004
  • Tocher, (2003), Rev. Fish. Sci., 11, pp. 107, 10.1080/713610925
  • Tocher, (2015), Aquaculture, 449, pp. 94, 10.1016/j.aquaculture.2015.01.010
  • Torres, (2017), AGROPALCA, 37, pp. 31
  • Torres, (2019), Poult. Sci., 98, pp. 6564, 10.3382/ps/pez429
  • Troell, (2014), Proc. Natl. Acad. Sci., 111, pp. 13257, 10.1073/pnas.1404067111
  • Wilson, (1992), J. Chromatogr. A, 623, pp. 403, 10.1016/0021-9673(92)80385-8
  • Yalcin, (2010), J. Med. Food, 13, pp. 610, 10.1089/jmf.2008.0024
  • Zanetti, (2010), Br. Poult. Sci., 51, pp. 629, 10.1080/00071668.2010.521142
  • Zárate, (2017), Clin. Transl. Med., 6, pp. 25, 10.1186/s40169-017-0153-6