Personality Traits Modulate the Effect of tDCS on Reading Speed of Social Sentences

  1. Reyes, Cristian
  2. Nila Yagual, Sara
  3. Padrón, Iván
  4. Marrero, Hipólito
  1. 1 Universidad de La Laguna
    info

    Universidad de La Laguna

    San Cristobal de La Laguna, España

    ROR https://ror.org/01r9z8p25

Revista:
Brain Sciences

ISSN: 2076-3425

Año de publicación: 2021

Volumen: 11

Número: 11

Páginas: 1464

Tipo: Artículo

DOI: 10.3390/BRAINSCI11111464 GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: Brain Sciences

Objetivos de desarrollo sostenible

Resumen

In this case, 62 university students participated in the study, in which a between-subjects design was adopted. Participants were also given the behavioral approach system (BAS) and behavioral inhibition system (BIS) scales. Participants had to read a list of 60 sentences with interpersonal and neutral content: 20 approach (“Pedro accepted Rosa in Whatsapp”), 20 avoidance (“Pedro Blocked Rosa in Whatsapp”) and 20 neutral (“Marta thought about the causes of the problem”). After reading them, they were subjected to 20 min of transcranial direct current stimulation (tDCS) in one of the two conditions: anodal (31) or sham (31). After tDCS, they had to read other list of 60 sentences matched in approach, avoidance and neutral contents with the former list. We found significant improvement in reading speed after anodal stimulation for social and neutral sentences. Regarding affective traits, we found that anodal stimulation benefitted reading speed in low-BIS and low-BAS participants and had no effect in either high BAS or high BIS participants. In addition, tDCS improvement in reading speed was significantly lower in avoidance sentences in low-BIS (avoidance) participants. We discuss these results at the light of previous research and highlight the importance of approach and avoidance traits as moderators of tDCS effects.

Referencias bibliográficas

  • Dodell-Feder, D.; Koster-Hale, J.; Bedny, M.; Saxe, R. FMRI Item Analysis in a Theory of Mind Task. NeuroImage 2011, 55, 705–712. [Google Scholar] [CrossRef] [PubMed]
  • Kennedy, D.P.; Adolphs, R. The Social Brain in Psychiatric and Neurological Disorders. Trends Cogn. Sci. 2012, 16, 559–572. [Google Scholar] [CrossRef] [PubMed]
  • Spunt, R.P.; Falk, E.B.; Lieberman, M.D. Dissociable Neural Systems Support Retrieval of How and Why Action Knowledge. Psychol. Sci. 2010, 21, 1593–1598. [Google Scholar] [CrossRef] [PubMed]
  • Gobbini, M.I.; Koralek, A.C.; Bryan, R.E.; Montgomery, K.J.; Haxby, J.V. Two Takes on the Social Brain: A Comparison of Theory of Mind Tasks. J. Cogn. Neurosci. 2007, 19, 1803–1814. [Google Scholar] [CrossRef]
  • Garofalo, S.; Timmermann, C.; Battaglia, S.; Maier, M.E.; di Pellegrino, G. Mediofrontal Negativity Signals Unexpected Timing of Salient Outcomes. J. Cogn. Neurosci. 2017, 29, 718–727. [Google Scholar] [CrossRef] [PubMed]
  • Battaglia, S.; Garofalo, S.; di Pellegrino, G.; Starita, F. Revaluing the Role of VmPFC in the Acquisition of Pavlovian Threat Conditioning in Humans. J. Neurosci. 2020, 40, 8491–8500. [Google Scholar] [CrossRef] [PubMed]
  • Battaglia, S.; Serio, G.; Scarpazza, C.; D’Ausilio, A.; Borgomaneri, S. Frozen in (e)Motion: How Reactive Motor Inhibition Is Influenced by the Emotional Content of Stimuli in Healthy and Psychiatric Populations. Behav. Res. Ther. 2021, 146, 103963. [Google Scholar] [CrossRef] [PubMed]
  • Watson, R.; Latinus, M.; Charest, I.; Crabbe, F.; Belin, P. People-Selectivity, Audiovisual Integration and Heteromodality in the Superior Temporal Sulcus. Cortex 2014, 50, 125–136. [Google Scholar] [CrossRef] [PubMed]
  • Wong, C.; Gallate, J. The function of the anterior temporal lobe: A review of the empirical evidence. Brain Res. 2012, 1449, 94–116. [Google Scholar] [CrossRef] [PubMed]
  • Ellena, G.; Starita, F.; Haggard, P.; Làdavas, E. The Spatial Logic of Fear. Cognition 2020, 203, 104336. [Google Scholar] [CrossRef]
  • Candini, M.; Battaglia, S.; Benassi, M.; di Pellegrino, G.; Frassinetti, F. The Physiological Correlates of Interpersonal Space. Sci. Rep. 2021, 11, 2611. [Google Scholar] [CrossRef]
  • Johnson, M.H.; Senju, A.; Tomalski, P. The Two-Process Theory of Face Processing: Modifications Based on Two Decades of Data from Infants and Adults. Neurosci. Biobehav. Rev. 2015, 50, 169–179. [Google Scholar] [CrossRef] [PubMed]
  • Pelphrey, K.A.; Morris, J.P. Brain Mechanisms for Interpreting the Actions of Others from Biological-Motion Cues. Curr. Dir. Psychol. Sci. 2006, 15, 136–140. [Google Scholar] [CrossRef]
  • Pelphrey, K.A.; Carter, E.J. Brain Mechanisms for Social Perception. Ann. N. Y. Acad. Sci. 2008, 1145, 283–299. [Google Scholar] [CrossRef] [PubMed]
  • Saitovitch, A.; Bargiacchi, A.; Chabane, N.; Brunelle, F.; Samson, Y.; Boddaert, N.; Zilbovicius, M. Social Cognition and the Superior Temporal Sulcus: Implications in Autism. Rev. Neurol. (Paris) 2012, 168, 762–770. [Google Scholar] [CrossRef]
  • Yang, D.Y.J.; Rosenblau, G.; Keifer, C.; Pelphrey, K.A. An Integrative Neural Model of Social Perception, Action Observation, and Theory of Mind. Neurosci. Biobehav. Rev. 2015, 51, 263–275. [Google Scholar] [CrossRef]
  • Flores, L.E.; Eckstrand, K.L.; Silk, J.S.; Allen, N.B.; Ambrosia, M.; Healey, K.L.; Forbes, E.E. Adolescents’ Neural Response to Social Reward and Real-World Emotional Closeness and Positive Affect. Cogn. Affect. Behav. Neurosci. 2018, 18, 705–717. [Google Scholar] [CrossRef] [PubMed]
  • Pelphrey, K.A.; Viola, R.J.; McCarthy, G. When Strangers Pass: Processing of Mutual and Averted Social Gaze in the Superior Temporal Sulcus. Psychol. Sci. 2004, 15, 598–603. [Google Scholar] [CrossRef] [PubMed]
  • Ross, L.A.; Olson, I.R. Social Cognition and the Anterior Temporal Lobes. NeuroImage 2010, 49, 3452–3462. [Google Scholar] [CrossRef] [PubMed]
  • Tavares, P.; Lawrence, A.D.; Barnard, P.J. Paying Attention to Social Meaning: An FMRI Study. Cereb. Cortex 2008, 18, 1876–1885. [Google Scholar] [CrossRef]
  • Marrero, H.; Urrutia, M.; Beltrán, D.; Gámez, E.; Díaz, J.M. Understanding Approach and Avoidance in Verbal Descriptions of Everyday Actions: An ERP Study. Cogn. Affect. Behav. Neurosci. 2017, 17, 612–624. [Google Scholar] [CrossRef] [PubMed]
  • Marrero, H.; Gámez, E.; Diaz, J.M.; Urrutia, M.; de Vega, M. Carefully encoding approach and avoidance body locomotion with interpersonal conduct in narrated interactions. Can. J. Exp. Psychol. 2015, 69, 190–199. [Google Scholar] [CrossRef] [PubMed]
  • Yavari, F.; Jamil, A.; Mosayebi Samani, M.; Vidor, L.P.; Nitsche, M.A. Basic and Functional Effects of Transcranial Electrical Stimulation (TES)—An Introduction. Neurosci. Biobehav. Rev. 2018, 85, 81–92. [Google Scholar] [CrossRef] [PubMed]
  • Barker, A.T.; Jalinous, R.; Freeston, I.L. Non-invasive magnetic stimulation of human motor cortex. Lancet 1985, 325, 1106–1107. [Google Scholar] [CrossRef]
  • George, M.S.; Aston-Jones, G. Noninvasive Techniques for Probing Neurocircuitry and Treating Illness: Vagus Nerve Stimulation (VNS), Transcranial Magnetic Stimulation (TMS) and Transcranial Direct Current Stimulation (TDCS). Neuropsychopharmacology 2010, 35, 301–316. [Google Scholar] [CrossRef] [PubMed]
  • Nitsche, M.A.; Cohen, L.G.; Wassermann, E.M.; Priori, A.; Lang, N.; Antal, A.; Paulus, W.; Hummel, F.; Boggio, P.S.; Fregni, F.; et al. Transcranial Direct Current Stimulation: State of the Art 2008. Brain Stimulat. 2008, 1, 206–223. [Google Scholar] [CrossRef] [PubMed]
  • Borgomaneri, S.; Battaglia, S.; Garofalo, S.; Tortora, F.; Avenanti, A.; di Pellegrino, G. State-Dependent TMS over Prefrontal Cortex Disrupts Fear-Memory Reconsolidation and Prevents the Return of Fear. Curr. Biol. 2020, 30, 3672–3679.e4. [Google Scholar] [CrossRef]
  • Brunelin, J.; Mondino, M.; Gassab, L.; Haesebaert, F.; Gaha, L.; Suaud-Chagny, M.-F.; Saoud, M.; Mechri, A.; Poulet, E. Examining Transcranial Direct-Current Stimulation (TDCS) as a Treatment for Hallucinations in Schizophrenia. Am. J. Psychiatry 2012, 169, 719–724. [Google Scholar] [CrossRef] [PubMed]
  • Kuo, M.-F.; Paulus, W.; Nitsche, M.A. Therapeutic Effects of Non-Invasive Brain Stimulation with Direct Currents (TDCS) in Neuropsychiatric Diseases. NeuroImage 2014, 85, 948–960. [Google Scholar] [CrossRef]
  • Loo, C.K.; Alonzo, A.; Martin, D.; Mitchell, P.B.; Galvez, V.; Sachdev, P. Transcranial Direct Current Stimulation for Depression: 3-Week, Randomised, Sham-Controlled Trial. Br. J. Psychiatry 2012, 200, 52–59. [Google Scholar] [CrossRef] [PubMed]
  • Marrero, H.; Yagual, S.N.; García-Marco, E.; Gámez, E.; Beltrán, D.; Díaz, J.M.; Urrutia, M. Enhancing Memory for Relationship Actions by Transcranial Direct Current Stimulation of the Superior Temporal Sulcus. Brain Sci. 2020, 10, 497. [Google Scholar] [CrossRef] [PubMed]
  • Cancer, A.; Antonietti, A. TDCS Modulatory Effect on Reading Processes: A Review of Studies on Typical Readers and Individuals with Dyslexia. Front. Behav. Neurosci. 2018, 12, 1–12. [Google Scholar] [CrossRef] [PubMed]
  • Thomson, J.M.; Doruk, D.; Mascio, B.; Fregni, F.; Cerruti, C. Transcranial Direct Current Stimulation Modulates Efficiency of Reading Processes. Front. Hum. Neurosci. 2015, 9, 1–9. [Google Scholar] [CrossRef]
  • Barsalou, L.W. Simulation, Situated Conceptualization, and Prediction. Philos. Trans. R. Soc. B Biol. Sci. 2009, 364, 1281–1289. [Google Scholar] [CrossRef]
  • Zwaan, R.A. The immersed experiencer: Toward an embodied theory of language comprehension. In The Psychology of Learning and Motivation; Ross, B.H., Ed.; Academic Press: New York, NY, USA, 2004; Volume 44, pp. 35–62. [Google Scholar]
  • Gray, J.A.A. A critique of Eysenck’s theory of personality. In A Model for Personality; Eysenck, H.J., Ed.; Springer: Berlin/Heidelberg, Germany, 1981; pp. 246–276. [Google Scholar]
  • Metuki, N.; Sela, T.; Lavidor, M. Enhancing Cognitive Control Components of Insight Problems Solving by Anodal TDCS of the Left Dorsolateral Prefrontal Cortex. Brain Stimulat. 2012, 5, 110–115. [Google Scholar] [CrossRef] [PubMed]
  • Blumenthal, T.D. Extraversion, Attention, and Startle Response Reactivity. Personal. Individ. Differ. 2001, 31, 495–503. [Google Scholar] [CrossRef]
  • Sela, T.; Ivry, R.B.; Lavidor, M. Prefrontal Control during a Semantic Decision Task That Involves Idiom Comprehension: A Transcranial Direct Current Stimulation Study. Neuropsychologia 2012, 50, 2271–2280. [Google Scholar] [CrossRef] [PubMed]
  • Giakoumaki, S.G.; Roussos, P.; Tsapakis, E.M.; Koiliari, E.; Pasparakis, E.; Zouraraki, C.; Bitsios, P. Cognitive and Personality Analysis of Startle Reactivity in a Large Cohort of Healthy Males. Biol. Psychol. 2013, 94, 582–591. [Google Scholar] [CrossRef]
  • LaRowe, S.D.; Patrick, C.J.; Curtin, J.J.; Kline, J.P. Personality Correlates of Startle Habituation. Biol. Psychol. 2006, 72, 257–264. [Google Scholar] [CrossRef] [PubMed]
  • Eysenck, M.W.; Derakshan, N.; Santos, R.; Calvo, M.G. Anxiety and cognitive performance: Attentional control theory. Emotion 2007, 7, 336–353. [Google Scholar] [CrossRef] [PubMed]
  • Faul, F.; Erdfelder, E.; Lang, A.G.; Buchner, A. G*Power 3: A Flexible Statistical Power Analysis Program for the Social, Behavioral, and Biomedical Sciences. Behav. Res. Methods 2007, 39, 175–191. [Google Scholar] [CrossRef] [PubMed]
  • Oldfield, R.C. The assessment and analysis of handedness: The Edinburgh inventory. Neuropsychologia 1971, 9, 97–113. [Google Scholar] [CrossRef]
  • Carver, C.S.; White, T.L. Behavioral Inhibition, Behavioral Activation, and Affective Responses to Impending Reward and Punishment: The BIS/BAS Scales. J. Pers. Soc. Psychol. 1994, 67, 319–333. [Google Scholar] [CrossRef]
  • Nitsche, M.A.; Doemkes, S.; Karaköse, T.; Antal, A.; Liebetanz, D.; Lang, N.; Tergau, F.; Paulus, W. Shaping the Effects of Transcranial Direct Current Stimulation of the Human Motor Cortex. J. Neurophysiol. 2007, 97, 3109–3117. [Google Scholar] [CrossRef]
  • Huang, Y.; Datta, A.; Bikson, M.; Parra, L.C. Realistic Volumetric-Approach to Simulate Transcranial Electric Stimulation—ROAST—A Fully Automated Open-Source Pipeline. J. Neural Eng. 2019, 16, 056006. [Google Scholar] [CrossRef]
  • Díez, E.; Gómez-Ariza, C.J.; Díez-Álamo, A.M.; Alonso, M.A.; Fernandez, A. The Processing of Semantic Relatedness in the Brain: Evidence from Associative and Categorical False Recognition Effects Following Transcranial Direct Current Stimulation of the Left Anterior Temporal Lobe. Cortex 2017, 93, 133–145. [Google Scholar] [CrossRef] [PubMed]
  • Zwissler, B.; Sperber, C.; Aigeldinger, S.; Schindler, S.; Kissler, J.; Plewnia, C. Shaping Memory Accuracy by Left Prefrontal Transcranial Direct Current Stimulation. J. Neurosci. 2014, 34, 4022–4026. [Google Scholar] [CrossRef]
  • Paulus, W. Transcranial electrical stimulation (tES-tDCS; tRNS, tACS) methods. Neuropsychol. Rehabil. 2011, 21, 602–617. [Google Scholar] [CrossRef] [PubMed]
  • Brunoni, A.R.; Amadera, J.; Berbel, B.; Volz, M.S.; Rizzerio, B.G.; Fregni, F. A Systematic Review on Reporting and Assessment of Adverse Effects Associated with Transcranial Direct Current Stimulation. Int. J. Neuropsychopharmacol. 2011, 14, 1133–1145. [Google Scholar] [CrossRef] [PubMed]
  • Kauschke, C.; Bahn, D.; Vesker, M.; Schwarzer, G. The Role of Emotional Valence for the Processing of Facial and Verbal Stimuli—Positivity or Negativity Bias? Front. Psychol. 2019, 10, 1654. [Google Scholar] [CrossRef] [PubMed]
  • Kaup, B.; Lüdtke, J.; Zwaan, R.A. Processing Negated Sentences with Contradictory Predicates: Is a Door That Is Not Open Mentally Closed? J. Pragmat. 2006, 38, 1033–1050. [Google Scholar] [CrossRef]