Effect of Process Parameters and Postprocessing on Mechanical Properties of Additive Manufacturing Polylactic Acid Obtained by Fused Deposition Modeling

  1. Rivera-López, Fernando 1
  2. Hernández-Molina, María 1
  3. del Medico Bravo, Alejandro 1
  4. Laz Pavón, Maria Milagros 1
  1. 1 Universidad de La Laguna
    info

    Universidad de La Laguna

    San Cristobal de La Laguna, España

    ROR https://ror.org/01r9z8p25

Journal:
3D Printing and Additive Manufacturing

ISSN: 2329-7662 2329-7670

Year of publication: 2021

Type: Article

DOI: 10.1089/3DP.2021.0052 GOOGLE SCHOLAR lock_openOpen access editor

More publications in: 3D Printing and Additive Manufacturing

Abstract

The aim of this article is to study the influence of some printing parameters and postprocessing on mechanicalproperties of polylactic acid samples manufactured by fused deposition modeling with a 3D printer. The effectsof different building orientations, concentric infill, and postprocessing by annealing were analyzed. In thissense, uniaxial tensile and three-point bending tests were performed to determine the ultimate strength, modulusof elasticity, and elongation at break. Among all printing parameters of interest, the print orientation can beconsidered one of the most important, being fundamental in the mechanical behavior. Once samples werefabricated, annealing processes were also considered, close to theTg, in order to study the effects on mechanicalproperties. In the modified print orientation, the average values for theEand therTSare 3337.15–3337.92 and36.42–37.62 MPa, compared with default printing with theEand therTSthat are 2541.63–2692.34 and 28.81–28.89 MPa, respectively. In the annealed samples, the values for theEfand therfare 2337.73 and 63.96 MPa,compared with the reference samples with theEfand therfvalues of 2164.40 and 59.66 MPa, respectively.Hence, the print orientation and postprocessing must be taken into account as important factors for the finalproperties of the desired product

Bibliographic References

  • 10.1016/j.compind.2017.08.002
  • Dizon JRC, (2018), Mechanical characterization of 3D-printed polymers. Addit Manuf, 20, pp. 44
  • Stern A, (2019), Addit Manuf, 27, pp. 503
  • 10.1016/j.addma.2018.10.028
  • 10.1016/j.autcon.2011.06.010
  • 10.1080/17452759.2016.1209867
  • 10.1016/j.autcon.2017.12.031
  • 10.1016/j.addma.2019.03.015
  • 10.1016/j.jclepro.2008.11.020
  • 10.1109/ACCESS.2014.2311810
  • 10.1016/j.jclepro.2019.04.086
  • 10.1016/j.mio.2016.08.001
  • Reddy KVP, (2018), ICMPC 2017 Mater Today Proc, 5, pp. 3895
  • 10.1016/j.ast.2016.12.019
  • 10.1016/j.jmapro.2018.07.007
  • 10.1016/j.matpr.2019.12.036
  • 10.4236/ojapps.2017.76024
  • 10.1016/j.matpr.2021.05.041
  • 10.1016/j.matpr.2020.05.484
  • 20. ISO/ASTM 52900:2015. Additive Manufacturing—General Principles—Terminology. West Conshohocken: ASTM International, 2015.
  • 10.1016/j.addr.2016.06.012
  • 10.1016/j.compscitech.2008.01.004
  • 10.1016/j.addma.2015.09.006
  • 10.1016/j.matpr.2018.08.145
  • 10.1016/S0141-3910(02)00372-5
  • 10.1016/j.atmosenv.2013.06.050
  • 10.1016/j.proeng.2015.08.1099
  • 28. Casavola C, Cazzato A, Moramarco V, et al. Orthotropic mechanical properties of fused deposition modelling parts described by classical laminate theory, Mater Des 2016;90:453–458.
  • 10.1016/j.mspro.2014.07.146
  • 10.1088/1742-6596/1130/1/012017
  • 10.1016/j.matdes.2019.108089
  • Rajpurohit SR, (2018), Int J Mater Met Eng, 12, pp. 6
  • Kiendl J, Compos Part B
  • 10.3390/polym10030313
  • 10.1007/s11837-015-1367-y
  • 10.1088/1757-899X/501/1/012028
  • 10.1016/j.promfg.2017.07.079
  • 10.1108/RPJ-07-2014-0083
  • 10.1016/j.matdes.2020.109121
  • 40. ISO 527-1:2019. Plastics—Determination of Tensile Properties—Part 1: General Principles. Geneva, Switzerland: International Organization for Standardization, 2012.
  • 41. ISO 527-2:2012. Plastics—Determination of Tensile Properties—Part 2: Test Conditions for Moulding and Extrusion Plastics. Geneva, Switzerland: International Organization for Standardization, 2012.
  • 42. ISO 178:2019. Plastics—Determination of Flexural Properties. Geneva, Switzerland: International Organization for Standardization, 2012.
  • Montero M, (2001), et al
  • 44. ASTM D790-10, Standard Test Methods for Flexural Properties of Unreinforced and Reinforced Plastics and Electrical Insulating Materials. West Conshohocken, PA: ASTM International, 2010.
  • 10.1016/j.supflu.2011.03.006
  • 10.1016/j.matdes.2017.03.051
  • 10.1016/j.promfg.2019.02.047
  • 10.1016/j.matpr.2018.01.146
  • Kerekes TW, (2019), Addit Manuf, 25, pp. 532
  • 10.1016/j.compositesb.2017.05.013
  • 10.1016/j.matdes.2014.02.038
  • 10.1016/j.prostr.2020.02.026
  • Kovan V, (2018), Mater Sci Nonequilib Phase Transform, 4, pp. 126
  • 10.3390/ma13010015
  • Abeykoon C, Int J Lightweight Mater Manuf, 3, pp. 284
  • 10.1088/1757-899X/670/1/012066
  • 10.1088/1757-899X/429/1/012101
  • 10.3934/matersci.2019.6.1033