Electron temperature fluctuations in Seyfert galaxies

  1. Riffel, Rogemar A 4
  2. Dors, Oli L 3
  3. Krabbe, Angela C 3
  4. Esteban, César 12
  1. 1 Instituto de Astrofísica de Canarias (IAC), E-38205 La Laguna, Spain
  2. 2 Departamento de Astrofísica, Universidad de La Laguna, E-38206 La Laguna, Spain
  3. 3 Universidade do Vale do Paraíba, Av. Shishima Hifumi, 2911, Cep 12244-000 São José dos Campos, SP, Brazil
  4. 4 Departamento de Física, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, 97105-900 Santa Maria, RS, Brazil
Aldizkaria:
Monthly Notices of the Royal Astronomical Society: Letters

ISSN: 1745-3925 1745-3933

Argitalpen urtea: 2021

Alea: 506

Zenbakia: 1

Orrialdeak: L11-L15

Mota: Artikulua

DOI: 10.1093/MNRASL/SLAB064 GOOGLE SCHOLAR lock_openSarbide irekia editor

Beste argitalpen batzuk: Monthly Notices of the Royal Astronomical Society: Letters

Laburpena

We use Gemini GMOS-IFU observations of three luminous nearby Seyfert galaxies (Mrk 79, Mrk 348, and Mrk 607) to estimate the electron temperature (Te) fluctuations in the inner 0.4–1.1 kpc region of these galaxies. Based on Te determinations through the [O iii]λ5007/λ4363 emission line ratio of each spaxel, temperature variations are quantified by computing the integrated value of the temperature fluctuation parameter (t2) projected in the plane of the sky t2A, for the first time in active galactic nuclei (AGNs). We find t2A values of 0.135, 0.039, and 0.015 for Mrk 79, Mrk 348, and Mrk 607, respectively, which are of the same order or larger than the maximum values reported in star-forming regions and planetary nebulae. Taking into account that t2A should be considered a lower limit of the total t2 in the nebular volume, the results suggest that the impact of such fluctuations on chemical abundance determinations can be important in some AGNs.

Erreferentzia bibliografikoak

  • Allington-Smith, (2002), PASP, 114, pp. 892, 10.1086/341712
  • Alloin, (1992), A&A, 266, pp. 117
  • Berg, (2020), ApJ, 893, pp. 96, 10.3847/1538-4357/ab7eab
  • Copetti, (2006), A&A, 453, pp. 943, 10.1051/0004-6361:20054736
  • D’Agostino, (2019), MNRAS, 487, pp. 4153, 10.1093/mnras/stz1611
  • Dors, (2015), MNRAS, 453, pp. 4102, 10.1093/mnras/stv1916
  • Dors, (2017), MNRAS, 468, pp. L113, 10.1093/mnrasl/slx036
  • Dors, (2020), MNRAS, 492, pp. 468, 10.1093/mnras/stz3492
  • Dors, (2020), MNRAS, 496, pp. 3209, 10.1093/mnras/staa1781
  • Esteban, (2004), MNRAS, 355, pp. 229, 10.1111/j.1365-2966.2004.08313.x
  • Flury, (2020), MNRAS, 496, pp. 2191, 10.1093/mnras/staa1563
  • Freitas, (2018), MNRAS, 476, pp. 2760, 10.1093/mnras/sty303
  • García-Rojas, (2007), ApJ, 670, pp. 457, 10.1086/521871
  • García-Rojas, (2006), MNRAS, 368, pp. 253, 10.1111/j.1365-2966.2006.10105.x
  • Gburek, (2019), ApJ, 887, pp. 168, 10.3847/1538-4357/ab5713
  • Hägele, (2008), MNRAS, 383, pp. 209, 10.1111/j.1365-2966.2007.12527.x
  • Ichikawa, (2017), ApJ, 835, pp. 74, 10.3847/1538-4357/835/1/74
  • Izotov, (2008), ApJ, 687, pp. 133, 10.1086/591660
  • Kakkad, (2018), A&A, 618, pp. A6, 10.1051/0004-6361/201832790
  • Kennicutt Robert, (2003), ApJ, 591, pp. 801, 10.1086/375398
  • Krabbe, (2002), A&A, 387, pp. 295, 10.1051/0004-6361:20020331
  • Krabbe, (2005), A&A, 443, pp. 981, 10.1051/0004-6361:20053274
  • Luridiana, (2015), A&A, 573, pp. A42, 10.1051/0004-6361/201323152
  • Mesa-Delgado, (2008), ApJ, 675, pp. 389, 10.1086/524296
  • Monreal-Ibero, (2020), A&A, 634, pp. A47, 10.1051/0004-6361/201936845
  • Oh, (2018), ApJS, 235, pp. 4, 10.3847/1538-4365/aaa7fd
  • Oliveira, (2008), A&A, 492, pp. 463, 10.1051/0004-6361:200810542
  • Peimbert, (1967), ApJ, 150, pp. 825, 10.1086/149385
  • Peimbert, (1969), Bol. Obs. Tonantzintla Tacubaya, 5, pp. 3
  • Peimbert, (2005), ApJ, 634, pp. 1056, 10.1086/444557
  • Peimbert, (2017), PASP, 129, pp. 082001, 10.1088/1538-3873/aa72c3
  • Pérez-Montero, (2017), PASP, 129, pp. 043001, 10.1088/1538-3873/aa5abb
  • Pilyugin, (2003), A&A, 399, pp. 1003, 10.1051/0004-6361:20021669
  • Rauber, (2014), A&A, 563, pp. A42, 10.1051/0004-6361/201323363
  • Revalski, (2018), ApJ, 856, pp. 46, 10.3847/1538-4357/aab107
  • Revalski, (2018), ApJ, 867, pp. 88, 10.3847/1538-4357/aae3e6
  • Revalski, (2021), ApJ, 910, pp. 139, 10.3847/1538-4357/abdcad
  • Riffel, (2021), MNRAS, 501, pp. L54, 10.1093/mnrasl/slaa194
  • Rubin, (2003), MNRAS, 340, pp. 362, 10.1046/j.1365-8711.2003.06185.x
  • Ruschel-Dutra, (2020), 10.5281/zenodo.3945237
  • Sanders, (2016), ApJ, 825, pp. L23, 10.3847/2041-8205/825/2/L23
  • Sanders, (2020), MNRAS, 491, pp. 1427, 10.1093/mnras/stz3032
  • Sandin, (2008), A&A, 486, pp. 545, 10.1051/0004-6361:200809635
  • Schmitt, (2003), ApJS, 148, pp. 327, 10.1086/377440
  • Smith, (1975), ApJ, 199, pp. 591, 10.1086/153727
  • Toribio San Cipriano, (2017), MNRAS, 467, pp. 3759, 10.1093/mnras/stx328
  • Torres-Peimbert, (1989), ApJ, 345, pp. 186, 10.1086/167894
  • Tsamis, (2003), MNRAS, 338, pp. 687, 10.1046/j.1365-8711.2003.06081.x
  • van Zee, (1998), AJ, 116, pp. 2805, 10.1086/300647
  • Wilson, (2015), ApJ, 812, pp. 45, 10.1088/0004-637X/812/1/45
  • Zurita, (2012), MNRAS, 427, pp. 1463, 10.1111/j.1365-2966.2012.22075.x