3D Recording and Point Cloud Analysis for Detecting and Tracking Morphological Deterioration in Archaeological Metals

  1. Fuentes-Porto, Alba
  2. Díaz-Aleman, Drago
  3. Díaz-González, Elisa
  1. 1 Universidad de La Laguna

    Universidad de La Laguna

    San Cristobal de La Laguna, España

    ROR https://ror.org/01r9z8p25

Innovation in information systems and technologies to support learning research. Proceedings of EMENA-ISTL 2019
  1. Serrhini, M. (ed. lit.)
  2. Silva, C. (ed. lit.)
  3. Aljahdali, S. (ed. lit.)

Publisher: Springer

ISSN: 2662-3447 2662-3455

ISBN: 9783030367770 9783030367787

Year of publication: 2020

Volume: 7

Pages: 362-367

Type: Book chapter

DOI: 10.1007/978-3-030-36778-7_40 GOOGLE SCHOLAR lock_openOpen access editor

Sustainable development goals


Cultural Heritage documentation field is living an outstanding technological renovation, and techniques as image processing and computer vision are becoming a more and more valuable resource for its preservation, research and diffusion. Trying to contribute in this field, we present a line of research focused on determining how precision three-dimensional records can help us to detect and quantify formal changes in archaeological metals. This interest is marked by the fact that this heritage usually presents advanced stages of corrosion that imply material fragility and make them susceptible to suffer physical damage in a short period of time.Our experimental context was the temporary loan of a rusted iron helmet. Its state of preservation was recorded before and after it was being transferred, supporting us in two systems of great diffusion in the field of 3D digitalization of heritage: structured light 3D imaging and Structure from Motion (SfM) systems. Finally, the M3C2 technique was used to quantify and interpret the geometric differences between these records and assess the significance of their accuracy.

Bibliographic References

  • Ministerio de Educación, Cultura y Deporte, Gobierno de España: The COREMANS Project. Intervention criteria for metallic materials (2015)
  • Lague, D., Brodu, N., Leroux, J.: Accurate 3D comparison of complex topography with terrestrial laser scanner: application to the Rangitikei canyon (N-Z). ISPRS J. Photogramm. Remote Sens. 82, 10–26 (2013)
  • Pereira-Uzal, J.M.: 3D modelling in cultural heritage using structure from motion techniques. PH Investig. 6, 49–59 (2016)
  • Díaz, F., Jiménez, J., Barreda, A., Asensi, B., Hervás, J.: Modelado 3D para la generación de patrimonio virtual. Virtual Archaeol. Rev. 6(12), 29 (2015)
  • Wachowiak, M.J., Karas, B.V.: 3D scanning and replication for museum and cultural heritage applications. J. Am. Inst. Conserv. J. Am. Inst. Conserv. 48(2), 140–158 (2009)
  • Gil-Melitón, M., Lerma, J.L.: Patrimonio histórico militar: digitalización 3D de la espada nazarí atribuida a Ali Atar. Virtual Archaeol. Rev. 10(20), 52–69 (2019)
  • Caro, J.L.: Fotogrametría digital para la difusión del patrimonio numismático. In: XV Congreso Nacional de Numismática, pp. 669–676, Madrid (2014)
  • Aicardi, I., Chiabrando, F., Maria, Lingua A., Noardo, F.: Recent trends in cultural heritage 3D survey: the photogrammetric computer vision approach. J. Cult. Herit. 32, 257–266 (2018)
  • Di Angelo, L., Di Stefano, P., Fratocchi, L., Marzola, A.: An AHP-based method for choosing the best 3D scanner for cultural heritage applications. J. Cult. Herit. 34, 109–115 (2018)
  • Changchang, W.: VisualSFM: a visual structure from motion system. http://ccwu.me/vsfm/