Enhance Lighting for the Internet of Things

  1. Jungnickel, V.
  2. Riege, M.
  3. Wu, X.
  4. Singh, R.
  5. O'Brien, D. C.
  6. Collins, S.
  7. Faulkner, F.
  8. Vazquez, M. M.
  9. Bech, M.C.
  10. Geilhardt, F.
  11. Braun, R.-P.
  12. Hinrichs, M.
  13. Deng, X.
  14. Tangdiongga, E.
  15. Koonen, A.M.J.
  16. Bober, K. L.
  17. Kottke, C.
  18. Corici, A.A.
  19. Emmelmann, M.
  20. Rufo, J. 1
  21. Bok, P.-B.
  22. Behnke, D.
  1. 1 Universidad de La Laguna
    info

    Universidad de La Laguna

    San Cristobal de La Laguna, España

    ROR https://ror.org/01r9z8p25

Actas:
2019 Global LIFI Congress (GLC)

Año de publicación: 2019

Tipo: Aportación congreso

DOI: 10.1109/GLC.2019.8864126 GOOGLE SCHOLAR lock_openAcceso abierto editor

Resumen

Today's Internet of Things (IoT), covering any communication between devices, is narrowband and not always provides reliability and low latency at the same time. A wide range of future IoT applications, i.e. flexible manufacturing, augmented reality and autonomous cars, will use artificial intelligence in the cloud to process sensor data jointly in real time. This future IoT will need mobile communication providing high bandwidth, reliable connectivity and low latency at the same time. While radio spectrum is densely populated, light communication (LC) can use unlicensed optical spectrum and enable high data rates over short distances for future IoT. By networking multiple LC-enabled access points, also known as Li-Fi, one can build a new mobile communication system integrated with lighting infrastructure that enables the future IoT. The main challenge to approach future IoT is to develop Li-Fi further into the mass-market serving a greater variety of use cases than today. Therefore, Li-Fi needs an open architecture, consensus building towards standards, a roadmap to support future IoT and technology demonstrations in real environments, such as indoors, manufacturing, logistics, conference rooms and outdoors for fixed-wireless access.

Referencias bibliográficas

  • jungnickel, (0), IEEE 802 15 13
  • 10.1109/ICC.2019.8761150
  • hinrichs, (0), IEEE 802 15 13
  • 10.1109/35.995852
  • bober, (2018), Performcance evaluation of a Coordinated visible light communication network
  • bober, (0), IEEE 802 15 13
  • 10.1109/MCOM.2016.7402263
  • 10.1364/JOCN.7.000960
  • (2018), System Architecture for the 5G System Stage 2 (Release 15)
  • 10.1109/JSAC.2017.2774618
  • 10.1109/JPHOT.2015.2480541
  • 10.23919/GLC.2018.8319104
  • jungnickel, (2016), IEEE Summer Topicals tutorial
  • 10.1109/JLT.2017.2694486
  • wang, (2015), IEEE Phot J, 7
  • (0), Wi-Fi market is worth 15 6 billion in 2022
  • 10.1364/OPTICA.3.000702
  • tsonev, (2014), Proc SPIE 9007 Broadband Access Communication Technologies VIII, 900702
  • (0), Li-Fi market will grow to 75 billion in 2023
  • 10.1109/MCOM.2013.6685758
  • 10.1109/JLT.2019.2893520
  • 10.1109/JLT.2018.2878362
  • 10.23919/GLC.2018.8319106
  • luo, (0), IEEE 802 11bb “LC usage model document”
  • (0)
  • 10.1109/IWOW.2013.6777767
  • 10.1364/OFC.2018.M1F.3