Parallelization of a Monte Carlo Ray Tracing Algorithm for Channel Modelling in Underwater Wireless Optical Communications

  1. Guerra, V.
  2. Quintana, C.
  3. Rufo, J. 1
  4. Rabadan, J.
  5. Perez-Jimenez, R.
  1. 1 Universidad de La Laguna
    info

    Universidad de La Laguna

    San Cristobal de La Laguna, España

    ROR https://ror.org/01r9z8p25

Revista:
Procedia Technology

ISSN: 2212-0173

Año de publicación: 2013

Volumen: 7

Páginas: 11-19

Tipo: Artículo

DOI: 10.1016/J.PROTCY.2013.04.002 GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: Procedia Technology

Resumen

In this paper, an algorithm to calculate the underwater wireless optical impulse response is presented. It is based on a modified Monte Carlo Ray Tracing algorithm and takes into account the most significant phenomena of the underwater channel. In order to reduce the simulation time, two parallelization schemes are proposed, one based on a multiprocessor architecture and other based on the use of GPU (Graphics Processing Unit). Several simulation results are presented, including scenario channel simulations and calculation of time computation complexity for each algorithm implementation.

Referencias bibliográficas

  • D. Anguita, D. Brizzolara, G. Parodi, Q. Hu, Optical wireless underwater communication for auv: Preliminary simulation and experimental results, in: OCEANS, 2011 IEEE - Spain, 2011, pp. 1-5. doi:10.1109/Oceans-Spain.2011.6003598.
  • J. Smart, Underwater optical communications systems part 1: variability of water optical parameters, in: Military Communica- tions Conference, 2005. MILCOM 2005. IEEE, 2005, pp. 1140-1146 Vol. 2. doi:10.1109/MILCOM. 2005.1605832.
  • J. Simpson, B. Hughes, J. Muth, A spatial diversity system to measure optical fading in an underwater communications channel, in: OCEANS 2009, MTS/IEEE Biloxi - Marine Technology for Our Future: Global and Local Challenges, 2009, pp. 1-6.
  • Barry, (1993), IEEE Journal on, 11, pp. 367
  • Lopez-Hernandez, (1998), Electronics Letters, 34, pp. 1819, 10.1049/el:19981173
  • Gonzalez, (2002), IEE Proceedings -, 149, pp. 222
  • B. Zhou, X. Hu, D. Chen, Memory-efficient volume ray tracing on gpu for radiotherapy, in: Application Specific Processors (SASP), 2011 IEEE 9th Symposium on, 2011, pp. 46-51. doi:10.1109/SASP. 2011.5941076.
  • F. Hanson, S. Radic, High bandwidth underwater optical communication, Appl. Opt. 47 (2) (2008) 277-283. doi:10.1364/AO.47.000277. URL http://ao.osa.org/abstract.cfm?URI=ao-47-2-277.
  • W. Matthus, in: Empirische Gleichungen fr den Brechungsindex des Meerwassers, no. 33, 1975.
  • G. T. McNeil, Metrical fundamentals of underwater lens system, in: Opt. Eng, no. 16, 1977, pp. 128-139.
  • NVidia, Nvidia tesla m2050 specification, http://www.nvidia.com/docs/IO/43395/NV DS Tesla M2050 M2070 Apr10 LowRes.pdf, consultado el 10 de Julio de 2012.
  • M. Matsumoto, T. Nishimura, Mersenne twister: a 623-dimensionally equidistributed uniform pseudo-random number generator, ACM Trans. Model. Comput. Simul. 8 (1) (1998) 3-30. doi:10.1145/272991.272995. URL http://doi.acm.org/10.1145/272991.272995.