Covalent Modification of Graphite and Graphene Using Diazonium Chemistry

  1. Rodríguez González, Miriam C. 1
  2. Mali, Kunal S.
  3. De Feyter, Steven
  1. 1 Universidad de La Laguna
    info

    Universidad de La Laguna

    San Cristobal de La Laguna, España

    ROR https://ror.org/01r9z8p25

Libro:
Aryl Diazonium Salts and Related Compounds

ISSN: 2197-4349 2197-4357

ISBN: 9783031043970 9783031043987

Año de publicación: 2022

Páginas: 157-181

Tipo: Capítulo de Libro

DOI: 10.1007/978-3-031-04398-7_8 GOOGLE SCHOLAR lock_openAcceso abierto editor

Resumen

The production of graphene with controlled properties and structure is one of the most challenging aspects for a chemist. Covalent functionalization is one of the common approaches to obtain well-defined and robust modification of carbon materials. Different protocols have been proposed for carrying out this functionalization step. However, aryl diazonium salts chemistry should be highlighted due to its efficiency and simplicity. In this book chapter we focus on the modification of carbon materials with sp2 hybridization (graphite and graphene) by using aryl diazonium salts. The on-surface chemistry of diazonium salts on model substrates is explored with a focus on the attempts that have been done to improve the fundamental knowledge about the aryl-carbon interface. Recent developments include control of the structure and the spatial distribution of the aryl moieties on the surface. Finally, the expansion of the protocols to bulk dispersions of graphene and the advantages for the mass production and development of applications based on this material are highlighted.

Referencias bibliográficas

  • Novoselov KS, Geim AK, Morozov SV et al (2004) Electric field in atomically thin carbon films. Science 306:666–669. https://doi.org/10.1126/science.1102896
  • Narita A, Wang XY, Feng X, Müllen K (2015) New advances in nanographene chemistry. Chem Soc Rev 44:6616–6643
  • Koehler FM, Jacobsen A, Ensslin K et al (2010) Selective chemical modification of graphene surfaces: distinction between single- and bilayer graphene. Small 6:1125–1130. https://doi.org/10.1002/smll.200902370
  • Mali KS, Greenwood J, Adisoejoso J et al (2015) Nanostructuring graphene for controlled and reproducible functionalization. Nanoscale 7:1566–1585
  • Kiang Chua C, Pumera M (2013) Covalent chemistry on graphene. Chem Soc Rev 42:3222–3233. https://doi.org/10.1039/c2cs35474h
  • Criado A, Melchionna M, Marchesan S, Prato M (2015) The covalent functionalization of graphene on substrates. Angew Chem Int Ed 54:10734–10750. https://doi.org/10.1002/anie.201501473
  • Park J, Yan M (2013) Covalent functionalization of graphene with reactive intermediates. Acc Chem Res 46:181–189. https://doi.org/10.1021/ar300172h
  • Allongue P, Delamar M, Desbat B et al (1997) Covalent modification of carbon surfaces by aryl radicals generated from the electrochemical reduction of diazonium salts. J Am Chem Soc 119:201–207. https://doi.org/10.1021/ja963354s
  • Delamar M, Hitmi R, Pinson J, Savéant J (1992) Covalent modification of carbon surfaces by grafting of functionalized aryl radicals produced from electrochemical reduction of diazonium salts. J Am Chem Soc 114:5883–5884. https://doi.org/10.1021/ja00040a074
  • Doppelt P, Hallais G, Pinson J et al (2007) Surface modification of conducting substrates. Existence of azo bonds in the structure of organic layers obtained from diazonium salts.https://doi.org/10.1021/cm0700551
  • Mesnage A, Lefèvre X, Jégou P et al (2012) Spontaneous grafting of diazonium salts: chemical mechanism on metallic surfaces. Langmuir 28:11767–11778. https://doi.org/10.1021/la3011103
  • Ferrari AC, Basko DM (2013) Raman spectroscopy as a versatile tool for studying the properties of graphene. Nat Nanotechnol 8:235–246
  • Sampathkumar K, Diez-Cabanes V, Kovaricek P et al (2019) On the suitability of Raman spectroscopy to monitor the degree of graphene functionalization by diazonium salts. J Phys Chem C 123:22397–22402. https://doi.org/10.1021/acs.jpcc.9b06516
  • Tanaka M, Sawaguchi T, Sato Y et al (2011) Surface modification of GC and HOPG with diazonium, amine, azide, and olefin derivatives. Langmuir 27:170–178. https://doi.org/10.1021/la1035757
  • Ma H, Lee L, Brooksby PA et al (2014) Scanning tunneling and atomic force microscopy evidence for covalent and noncovalent interactions between aryl films and highly ordered pyrolytic graphite. J Phys Chem C 118:5820–5826. https://doi.org/10.1021/jp411826s
  • Greenwood J, Phan TH, Fujita Y et al (2015) Covalent modification of graphene and graphite using diazonium chemistry: tunable grafting and nanomanipulation. ACS Nano 9:5520–5535. https://doi.org/10.1021/acsnano.5b01580
  • Verstraete L, De Feyter S (2021) 2D Self-assembled molecular networks and on-surface reactivity under nanoscale lateral confinement. Chem Soc Rev. https://doi.org/10.1039/D0CS01338B
  • van Gorp H, Walke P, Teyssandier J et al (2020) On the thermal stability of aryl groups chemisorbed on graphite. J Phys Chem C 124:1980–1990. https://doi.org/10.1021/acs.jpcc.9b09808
  • Seber G, Rudnev AV, Droghetti A et al (2017) Covalent modification of highly ordered pyrolytic graphite with a stable organic free radical by using diazonium chemistry. Chem Eur J 23:1415–1421. https://doi.org/10.1002/chem.201604700
  • Xia Y, Martin C, Seibel J et al (2020) Iodide mediated reductive decomposition of diazonium salts: towards mild and efficient covalent functionalization of surface-supported graphene. Nanoscale 12:11916–11926. https://doi.org/10.1039/d0nr03309j
  • Pandurangappa M, Ramakrishnappa T (2008) Derivatization and characterization of functionalized carbon powder via diazonium salt reduction. J Solid State Electrochem 12:1411–1419. https://doi.org/10.1007/s10008-007-0470-6
  • Rodríguez González MC, Brown A, Eyley S et al (2020) Self-limiting covalent modification of carbon surfaces: diazonium chemistry with a twist. Nanoscale 12:18782–18789. https://doi.org/10.1039/d0nr05244b
  • Mévellec V, Roussel S, Tessier L et al (2007) Grafting polymers on surfaces: a new powerful and versatile diazonium salt-based one-step process in aqueous media. Chem Mater 19:6323–6330. https://doi.org/10.1021/cm071371i
  • Tahara K, Kubo Y, Lindner B et al (2019) Steric and electronic effects of electrochemically generated aryl radicals on grafting of the graphite surface. Langmuir 35:2089–2098. https://doi.org/10.1021/acs.langmuir.8b03339
  • Jiang D, Sumpter BG, Dai S (2006) How do aryl groups attach to a graphene sheet? https://doi.org/10.1021/JP065980
  • González MCR, Carro P, Vázquez L, Creus AH (2016) Mapping nanometric electronic property changes induced by an aryl diazonium sub-monolayer on HOPG. Phys Chem Chem Phys 18:29218–29225. https://doi.org/10.1039/c6cp05910d
  • Bekyarova E, Itkis ME, Ramesh P et al (2009) Chemical modification of epitaxial graphene: spontaneous grafting of aryl groups. J Am Chem Soc 131:1336–1337. https://doi.org/10.1021/ja8057327
  • Wang QH, Jin Z, Kim KK et al (2012) Understanding and controlling the substrate effect on graphene electron-transfer chemistry via reactivity imprint lithography. Nat Chem 4:724–732. https://doi.org/10.1038/nchem.1421
  • Mathieu C, Barrett N, Rault J et al (2011) Microscopic correlation between chemical and electronic states in epitaxial graphene on SiC(000-1). Phys Rev B—Condens Matter Mater Phys 83.https://doi.org/10.1103/PhysRevB.83.235436
  • Liu H, Ryu S, Chen Z et al (2009) Photochemical reactivity of graphene. J Am Chem Soc 131:17099–17101. https://doi.org/10.1021/ja9043906
  • Wu Q, Wu Y, Hao Y et al (2013) Selective surface functionalization at regions of high local curvature in graphene. Chem Commun 49:677–679. https://doi.org/10.1039/c2cc36747e
  • Bissett MA, Konabe S, Okada S et al (2013) Enhanced chemical reactivity of graphene induced by mechanical strain. ACS Nano 7:10335–10343. https://doi.org/10.1021/nn404746h
  • Shih CJ, Wang QH, Jin Z et al (2013) Disorder imposed limits of mono- and bilayer graphene electronic modification using covalent chemistry. Nano Lett 13:809–817. https://doi.org/10.1021/nl304632e
  • Niyogi S, Bekyarova E, Itkis ME et al (2010) Spectroscopy of covalently functionalized graphene. Nano Lett 10:4061–4066. https://doi.org/10.1021/nl1021128
  • Zhang H, Bekyarova E, Huang JW et al (2011) Aryl functionalization as a route to band gap engineering in single layer graphene devices. Nano Lett 11:4047–4051. https://doi.org/10.1021/nl200803q
  • Ambrosio G, Brown A, Daukiya L et al (2020) Impact of covalent functionalization by diazonium chemistry on the electronic properties of graphene on SiC. Nanoscale 12:9032–9037. https://doi.org/10.1039/d0nr01186j
  • Ambrosio G, Drera G, di Santo G et al (2020) Interface chemistry of graphene/Cu grafted by 3,4,5-tri-methoxyphenyl. Sci Rep 10:1–9. https://doi.org/10.1038/s41598-020-60831-8
  • Breton T, Downard AJ (2017) Controlling grafting from aryldiazonium salts: a review of methods for the preparation of monolayers. Aust J Chem 70:960–972
  • Nielsen LT, Vase KH, Dong M et al (2007) Electrochemical approach for constructing a monolayer of thiophenolates from grafted multilayers of diaryl disulfides. J Am Chem Soc 129:1888–1889. https://doi.org/10.1021/ja0682430
  • Leroux YR, Hapiot P (2013) Nanostructured monolayers on carbon substrates prepared by electrografting of protected aryldiazonium salts. Chem Mater 25:489–495. https://doi.org/10.1021/cm303844v
  • Combellas C, Kanoufi F, Pinson J, Podvorica FI (2008) Sterically hindered diazonium salts for the grafting of a monolayer on metals. J Am Chem Soc 130:8576–8577. https://doi.org/10.1021/ja8018912
  • Actis P, Caulliez G, Shul G et al (2008) Functionalization of glassy carbon with diazonium salts in ionic liquids. Langmuir 24:6327–6333. https://doi.org/10.1021/la703714a
  • Menanteau T, Levillain E, Downard AJ, Breton T (2015) Evidence of monolayer formation via diazonium grafting with a radical scavenger: electrochemical, AFM and XPS monitoring. Phys Chem Chem Phys 17:13137–13142. https://doi.org/10.1039/c5cp01401h
  • González MCR, Orive AG, Salvarezza RC, Creus AH (2016) Electrodeposition of gold nanoparticles on aryl diazonium monolayer functionalized HOPG surfaces. Phys Chem Chem Phys 18:1953–1960. https://doi.org/10.1039/c5cp06415e
  • Menanteau T, Dias M, Levillain E et al (2016) Electrografting via diazonium chemistry: the key role of the aryl substituent in the layer growth mechanism. J Phys Chem C 120:4423–4429. https://doi.org/10.1021/acs.jpcc.5b12565
  • Wei T, Bao L, Hauke F, Hirsch A (2020) Recent advances in graphene patterning. ChemPlusChem 85:1655–1668. https://doi.org/10.1002/cplu.202000419
  • Kirkman PM, Güell AG, Cuharuc AS, Unwin PR (2014) Spatial and temporal control of the diazonium modification of sp2 carbon surfaces. J Am Chem Soc 136:36–39. https://doi.org/10.1021/ja410467e
  • Maldonado S, Smith TJ, Williams RD et al (2006) Surface modification of indium tin oxide via electrochemical reduction of aryldiazonium cations. Langmuir 22:2884–2891. https://doi.org/10.1021/la052696l
  • Corgier BP, Bélanger D (2010) Electrochemical surface nanopatterning using microspheres and aryldiazonium. Langmuir 26:5991–5997. https://doi.org/10.1021/la904521w
  • van Gorp H, Walke P, Bragança AM et al (2018) Self-assembled polystyrene beads for templated covalent functionalization of graphitic substrates using diazonium chemistry. ACS Appl Mater Interfaces 10:12005–12012. https://doi.org/10.1021/acsami.7b18969
  • Nguyen VQ, Schaming D, Martin P, Lacroix JC (2019) Nanostructured mixed layers of organic materials obtained by nanosphere lithography and electrochemical reduction of aryldiazonium salts. Langmuir 35:15071–15077. https://doi.org/10.1021/acs.langmuir.9b02811
  • Koehler FM, Luechinger NA, Ziegler D et al (2009) Permanent pattern-resolved adjustment of the surface potential of graphene-like carbon through chemical functionalization. Angew Chem Int Ed 48:224–227. https://doi.org/10.1002/anie.200804485
  • Wei T, Kohring M, Chen M et al (2020) Highly efficient and reversible covalent patterning of graphene: 2D-management of chemical information. Angew Chem Int Ed 59:5602–5606. https://doi.org/10.1002/anie.201914088
  • Bao L, Zhao B, Lloret V et al (2020) Spatially resolved bottom-side fluorination of graphene by two-dimensional substrate patterning. Angew Chem Int Ed 59:6700–6705. https://doi.org/10.1002/anie.202002508
  • Wei T, Kohring M, Weber HB et al (2021) Molecular embroidering of graphene. Nat Commun 12:1–8. https://doi.org/10.1038/s41467-020-20651-w
  • Phan TH, van Gorp H, Li Z et al (2019) Graphite and graphene fairy circles: a bottom-up approach for the formation of nanocorrals. ACS Nano 13:5559–5571. https://doi.org/10.1021/acsnano.9b00439
  • Xia Z, Leonardi F, Gobbi M et al (2016) Electrochemical functionalization of graphene at the nanoscale with self-assembling diazonium salts. ACS Nano 10:7125–7134. https://doi.org/10.1021/acsnano.6b03278
  • Nguyen VQ, Sun X, Lafolet F et al (2016) Unprecedented self-organized monolayer of a Ru(II) complex by diazonium electroreduction. J Am Chem Soc 138:9381–9384. https://doi.org/10.1021/jacs.6b04827
  • Tahara K, Ishikawa T, Hirsch BE et al (2018) Self-assembled monolayers as templates for linearly nanopatterned covalent chemical functionalization of graphite and graphene surfaces. ACS Nano 12:11520–11528. https://doi.org/10.1021/acsnano.8b06681
  • Tahara K, Kubo Y, Hashimoto S et al (2020) Porous self-assembled molecular networks as templates for chiral-position-controlled chemical functionalization of graphitic surfaces. J Am Chem Soc 142:7699–7708. https://doi.org/10.1021/jacs.0c02979
  • Lomeda JR, Doyle CD, Kosynkin DV et al (2008) Diazonium functionalization of surfactant-wrapped chemically converted graphene sheets. J Am Chem Soc 130:16201–16206. https://doi.org/10.1021/ja806499w
  • Sun Z, Kohama S, Zhang Z et al (2010) Soluble graphene through edge-selective functionalization. Nano Res 3:117–125. https://doi.org/10.1007/s12274-010-1016-2
  • Bouša D, Pumera M, Sedmidubský D et al (2016) Fine tuning of graphene properties by modification with aryl halogens. Nanoscale 8:1493–1502. https://doi.org/10.1039/c5nr06295k
  • Englert JM, Dotzer C, Yang G et al (2011) Covalent bulk functionalization of graphene. Nat Chem 3:279–286. https://doi.org/10.1038/nchem.1010
  • Abellán G, Schirowski M, Edelthalhammer KF et al (2017) Unifying principles of the reductive covalent graphene functionalization. J Am Chem Soc 139:5175–5182. https://doi.org/10.1021/jacs.7b00704
  • Leroux YR, Bergamini JF, Ababou S et al (2015) Synthesis of functionalized few-layer graphene through fast electrochemical expansion of graphite. J Electroanal Chem 753:42–46. https://doi.org/10.1016/j.jelechem.2015.06.013
  • Ossonon BD, Bélanger D (2017) Functionalization of graphene sheets by the diazonium chemistry during electrochemical exfoliation of graphite. Carbon 111:83–93. https://doi.org/10.1016/j.carbon.2016.09.063
  • Gautier C, López I, Breton T (2021) A post-functionalization toolbox for diazonium (electro)-grafted surfaces: review of the coupling methods. Mater Adv. https://doi.org/10.1039/D1MA00077B
  • Hetemi D, Noël V, Pinson J (2020) Grafting of diazonium salts on surfaces: application to biosensors. Biosensors 10
  • Hajdukiewicz J, Boland S, Kavanagh P, Leech D (2010) An enzyme-amplified amperometric DNA hybridisation assay using DNA immobilised in a carboxymethylated dextran film anchored to a graphite surface. Biosens Bioelectron 25:1037–1042. https://doi.org/10.1016/j.bios.2009.09.020
  • Ahmed ME, Dey S, Mondal B, Dey A (2017) H2 evolution catalyzed by a FeFe-hydrogenase synthetic model covalently attached to graphite surfaces. Chem Commun 53:8188–8191. https://doi.org/10.1039/c7cc04281g
  • Martin C, Alias M, Christien F et al (2009) Graphite-grafted silicon nanocomposite as a negative electrode for lithium-ion batteries. Adv Mater 21:4735–4741. https://doi.org/10.1002/adma.200900235
  • Rüdiger O, Abad JM, Hatchikian EC et al (2005) Oriented immobilization of Desulfovibrio gigas hydrogenase onto carbon electrodes by covalent bonds for nonmediated oxidation of H2. J Am Chem Soc 127:16008–16009. https://doi.org/10.1021/ja0554312
  • Moock DS, Steinmüller SO, Wessely ID et al (2018) Surface functionalization of silicon, HOPG, and graphite electrodes: toward an artificial solid electrolyte interface. ACS Appl Mater Interfaces 10:24172–24180. https://doi.org/10.1021/acsami.8b04877
  • Castelaín M, Martínez G, Merino P et al (2012) Graphene functionalisation with a conjugated poly(fluorene) by click coupling: striking electronic properties in solution. Chem Eur J 18:4965–4973. https://doi.org/10.1002/chem.201102008
  • Neri G, Scala A, Barreca F et al (2015) Engineering of carbon based nanomaterials by ring-opening reactions of a reactive azlactone graphene platform. Chem Commun 51:4846–4849. https://doi.org/10.1039/c5cc00518c
  • Fortgang P, Tite T, Barnier V et al (2016) Robust electrografting on self-organized 3D graphene electrodes. ACS Appl Mater Interfaces 8:1424–1433. https://doi.org/10.1021/acsami.5b10647
  • Peng C, Xiong Y, Liu Z et al (2013) Bulk functionalization of graphene using diazonium compounds and amide reaction. Appl Surf Sci 280:914–919. https://doi.org/10.1016/j.apsusc.2013.05.094
  • Wang R, Xue C (2013) A sensitive electrochemical immunosensor for alpha-fetoprotein based on covalently incorporating a bio-recognition element onto a graphene modified electrode via diazonium chemistry. Anal Methods 5:5195–5200. https://doi.org/10.1039/c3ay40739j