Design, Semisynthesis, and Estrogenic Activity of Lignan Derivatives from Natural Dibenzylbutyrolactones
- López-Rojas, Priscila
- Amesty, Ángel
- Guerra-Rodríguez, Miguel
- Brito-Casillas, Yeray
- Guerra, Borja
- Fernández-Pérez, Leandro
- Estévez-Braun, Ana
-
1
Universidad de La Laguna
info
ISSN: 1424-8247
Año de publicación: 2022
Volumen: 15
Número: 5
Páginas: 585
Tipo: Artículo
Otras publicaciones en: Pharmaceuticals
Resumen
Based on molecular docking studies on the ERα, a series of lignan derivatives (3–16) were designed and semisynthesized from the natural dibenzylbutyrolactones bursehernin (1) and matairesinol dimethyl ether (2). To examine their estrogenic and antiestrogenic potencies, the effects of these compounds on estrogen receptor element (ERE)-driven reporter gene expression and viability in human ER+ breast cancer cells were evaluated. Lignan compounds induced ERE-driven reporter gene expression with very low potency as compared with the pure agonist E2. However, coincubation of 5 μM of lignan derivatives 1, 3, 4, 7, 8, 9, 11, 13, and 14 with increasing concentrations of E2 (from 0.01 pM to 1 nM) reduced both the potency and efficacy of pure agonists. The binding to the rhERα-LBD was validated by TR-FRET competitive binding assay and lignans bound to the rhERα with IC50 values from 0.16 μM (compound 14) to 6 μM (compound 4). Induced fit docking (IFD) and molecular dynamics (MD) simulations for compound 14 were carried out to further investigate the binding mode interactions. Finally, the in silico ADME predictions indicated that the most potent lignan derivatives exhibited good drug-likeness
Información de financiación
Financiadores
-
Ministerio de Ciencia, Innovación y Universidades
- RTI2018-094356-B-C21
-
Agencia Canaria de Investigación, Innovación y Sociedad de la Información
- ProID2021010037
- ProID2017010071
Referencias bibliográficas
- Bertrand, (2016), Nat. Prod. Rep., 33, pp. 1044, 10.1039/C6NP00021E
- 10.3390/metabo5020270
- 10.1016/j.ejphar.2019.05.008
- 10.1021/jm00012a010
- 10.1016/j.ejmech.2014.01.038
- 10.3390/molecules25010183
- 10.1021/jm00292a012
- 10.1039/C5RA23516B
- 10.1248/cpb.40.1191
- 10.1016/j.tox.2011.05.005
- 10.1016/j.fitote.2019.02.011
- 10.1248/cpb.43.1701
- 10.1016/j.bmc.2007.12.003
- 10.1146/annurev.arplant.55.031903.141729
- Michel, (2013), Planta Med., 79, pp. 514, 10.1055/s-0032-1328300
- 10.1124/pr.112.006833
- Birt, (2001), Adv. Exp. Med. Biol., 492, pp. 1, 10.1007/978-1-4615-1283-7_1
- Cos, (2003), Planta Med., 69, pp. 589, 10.1055/s-2003-41122
- 10.3389/fphar.2021.644103
- 10.1016/j.molmed.2012.12.007
- 10.1002/cmdc.201500148
- 10.1016/S0040-4020(01)90430-2
- 10.1002/ejoc.201501042
- 10.1016/0040-4020(68)88130-X
- Greene, (1999)
- 10.1093/toxsci/kfh180
- Macgregor, (1998), Pharmacol. Rev., 50, pp. 151
- 10.1021/np050457s
- 10.1248/bpb.30.814
- 10.1021/jf102006w
- Wakeling, (1991), Cancer Res., 51, pp. 3867
- 10.1093/toxsci/66.1.69
- 10.1177/1087057109359196
- 10.1016/j.ejpb.2013.04.024
- 10.1152/physrev.00024.2016
- 10.1146/annurev-physiol-021909-135917
- 10.1530/JME-13-0173
- 10.1074/jbc.M611424200
- 10.1016/j.molcel.2013.06.007
- 10.1038/s41596-021-00597-z
- 10.1038/s41598-017-03774-x
- 10.1021/acs.jcim.1c00404
- Silakari, (2021), pp. 131
- 10.1021/jm050540c
- 10.3389/fphar.2021.701568
- 10.1021/jm2000689
- 10.1021/jm020017n
- 10.1080/17460441.2020.1798926
- Perrin, (1988)
- 10.1016/0022-1759(83)90303-4
- 10.1016/0003-2697(76)90527-3
- 10.1021/jm051256o
- 10.1021/jm0306430
- (2020)
- 10.1111/j.1747-0285.2005.00327.x
- 10.1002/jcc.20292
- 10.1063/1.445869
- 10.1063/1.2191489
- 10.1021/j100153a002
- (2020)
- Duy, (2000), J. Am. Chem. Soc., 122, pp. 2878, 10.1021/ja993663t
- 10.1016/S0169-409X(02)00008-X