Almacenamiento energético por bombeo reversible en la isla de Gran Canariacontribuciones

  1. TORRES HERRERA, HILARIO JOSÉ
Supervised by:
  1. Alexis Lozano Medina Director

Defence university: Universidad de Las Palmas de Gran Canaria

Fecha de defensa: 20 January 2023

Committee:
  1. Joaquín Fernández Francos Chair
  2. Ana María Blanco Marigorta Secretary
  3. Agustín Manuel Delgado Torres Committee member

Type: Thesis

Abstract

In order to achieve the minimum targets for the penetration of renewable energy sources (RES) and the development of energy storage set by the different organisations, this thesis provides two contributions: a methodological proposal for the evaluation of the potential for pumped hydro energy storage (PHES) and a dynamic operation model for PHES systems. In "Contribution 1", the objective is to propose a universal, modularised methodology for simple replication that serves as a tool for the evaluation of the viable potential of PHES in a given territory, through the use of a package of predesigned constraints. An optimisation algorithm is included. Furthermore, the results are classified in basins or interbasins of ravines and demonstrate that the high potential assumed a priori is considerably reduced, showing how important it is that the restrictions applied are adapted to the territory in question. The methodology is applied to the island of Gran Canaria, because of its large number of large dams and the fact that it does not have any large scale hydroelectric power plants at present. In "Contribution 2", the main objective is to create a dynamic operation model that studies the contribution of a PHES system to a given electricity market in a scenario of increased RES penetration. The model is applied to the case of the Salto de Chira power plant on the island of Gran Canaria. The results demonstrate the optimisation of the plant's operation strategy and the need to: take advantage of other PHES plants; use other storage technologies; and continue using conventional energy sources (CES) until the RES can cover the electricity demand on their own. The model is validated by providing reliable results within the margins established in the power plant project and also because they are within the range of the different forecasts made so far.