Plasmonic Photocatalysts for Water Splitting

  1. Francisco J. Peón Díaz
  2. Rodrigo Segura del Río
  3. Paul Eduardo David Soto Rodriguez
Libro:
Photoelectrochemical Hydrogen Generation: Theory, Materials Advances, and Challenges

ISSN: 2524-5384 2524-5392

ISBN: 9789811672842 9789811672859

Año de publicación: 2022

Páginas: 117-173

Tipo: Capítulo de Libro

DOI: 10.1007/978-981-16-7285-9_5 GOOGLE SCHOLAR

Resumen

In the current chapter we discuss the importance of plasmonics for photoelectrochemical water splitting. A survey through plasmonics, the underlying theoretical background, and an overview of selected articles are provided highlighting the different plasmonic-enhanced systems. All relevant diagnostic parameters are explained, and simple band diagrams are chosen to provide a visual overview to explain the main mechanisms taking place. Furthermore, we provide a scope of how the field could progress and what it is still lacking.

Referencias bibliográficas

  • WHO (2016) Preventing disease through healthy environments: a global assessment of the burden of disease from environmental risks. París, France
  • Ellabban O, Abu-Rub H, Blaabjerg F (2014) Renewable energy resources: current status, future prospects and their enabling technology. Renew Sustain Energy Rev 39:748–764. https://doi.org/10.1016/j.rser.2014.07.113
  • Simonescu M, Albu L-L, Raileanu Szeles M, Bilan Y (2017) The impact of biofuels utilization in transport on the sustainable development in the European union. Technol Econ Dev Econ 23:667–686. https://doi.org/10.3846/20294913.2017.1323318
  • Kenyon GF (1981) The environmental effects of hydroelectric projects. Can Water Resour J 6:309–314. https://doi.org/10.4296/cwrj0603309
  • McCoy M (2019) Syzygy plasmonics. In: Syzygy plasmon. http://plasmonics.tech/. Accessed 24 Jun 2020
  • Yin J, Jin J, Lin H, Yin Z, Li J, Lu M, Guo L, Xi P, Tang Y, Yan C (2020) Optimized metal chalcogenides for boosting water splitting. Adv Sci 7:1903070. https://doi.org/10.1002/advs.201903070
  • Ma QB, Hofmann JP, Litke A, Hensen EJM (2015) Cu2O photoelectrodes for solar water splitting: Tuning photoelectrochemical performance by controlled faceting. Sol Energy Mater Sol Cells 141:178–186. https://doi.org/10.1016/j.solmat.2015.05.025
  • Nellist MR, Laskowski FAL, Lin F, Mills TJ, Boettcher SW (2016) Semiconductor-electrocatalyst interfaces: theory, experiment, and applications in photoelectrochemical water splitting. Acc Chem Res 49:733–740. https://doi.org/10.1021/acs.accounts.6b00001
  • Nazir H, Muthuswamy N, Louis C, Jose S, Prakash J, Buan MEM, Flox C, Chavan S, Shi X, Kauranen P, Kallio T, Maia G, Tammeveski K, Lymperopoulos N, Carcadea E, Veziroglu E, Iranzo A, M. Kannan A (2020) Is the H2 economy realizable in the foreseeable future? Part III: H2 usage technologies, applications, and challenges and opportunities. Int J Hydrogen Energy 45:28217–28239
  • Zheng Z, Xie W, Huang B, Dai Y (2018) Plasmon‐enhanced solar water splitting on metal‐semiconductor photocatalysts. Chem—A Eur J 24:18322–18333. https://doi.org/10.1002/chem.201803705
  • Barber DJ, Freestone IC (1990) An investigation of the origin of the colour of the lycurgus cup by analytical transmission electron microscopy. Archaeometry 32:33–45. https://doi.org/10.1111/j.1475-4754.1990.tb01079.x
  • Loos M (2015) Nanoscience and Nanotechnology. In: Carbon Nanotube Reinforced Composites. Elsevier, pp 1–36
  • Bazzicalupi C, Bianchi A, García-España E, Delgado-Pinar E (2014) Metals in supramolecular chemistry. Inorganica Chim Acta 417:3–26
  • Jose Varghese R, Sakho EHM, Parani S, Thomas S, Oluwafemi OS, Wu J (2019) Introduction to nanomaterials: synthesis and applications. In: Nanomaterials for Solar Cell Applications. Elsevier, pp 75–95
  • Camusso L, Bortone S (1992) Ceramics of the world: from 4000 B.C. to the present. Choice Rev Online 29:29-6073-29–6073. https://doi.org/10.5860/choice.29-6073
  • Helcher H (1718) Aurum potabile oder gold tinstur
  • Nickelson L (2019) Electromagnetic theory and plasmonics for engineers. Springer Singapore, Singapore
  • Faraday M (1857) X. The bakerian lecture. —experimental relations of gold (and other metals) to light. Philos Trans R Soc London 147:145–181. https://doi.org/10.1098/rstl.1857.0011
  • Wood RW (1902) On a remarkable case of uneven distribution of light in a diffraction grating spectrum. Proc Phys Soc London 18:269–275. https://doi.org/10.1088/1478-7814/18/1/325
  • Garnet JM (1904) XII. Colours in metal glasses and in metallic films. Philos Trans R Soc London Ser A, Contain Pap a Math or Phys Character 203:385–420. https://doi.org/10.1098/rsta.1904.0024
  • Garnet JM (1905) Colours in metal glasses, in metallic films and in metallic solutions.—II. Proc R Soc London Ser A, Contain Pap a Math Phys Character 76:370–373. https://doi.org/10.1098/rspa.1905.0039
  • Mie G (1908) Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen. Ann Phys 330:377–445. https://doi.org/10.1002/andp.19083300302
  • Rayleigh, Lord (1907) III. Note on the remarkable case of diffraction spectra described by Prof. Wood. London, Edinburgh, Dublin Philos Mag J Sci 14:60–65. https://doi.org/10.1080/14786440709463661
  • Strong J (1936) Effect of evaporated films on energy distribution in grating spectra. Phys Rev 49:291–296. https://doi.org/10.1103/PhysRev.49.291
  • Ritchie RH (1957) Plasma losses by fast electrons in thin films. Phys Rev 106:874–881. https://doi.org/10.1103/PhysRev.106.874
  • Ritchie R, Arakawa E, Cowan J, Hamm R (1968) Surface-plasmon resonance effect in grating diffraction. Phys Rev Lett 21:1530–1533. https://doi.org/10.1103/PhysRevLett.21.1530
  • Rudolph D, Schmahl G (1970) High precision gratings produced with laserlight and photoresist layers. Optik (Stuttg) 5:475–487
  • Holst K, Raether H (1970) The influence of thin surface films on the plasma resonance emission. Opt Commun 2:312–316. https://doi.org/10.1016/0030-4018(70)90151-3
  • Kreibig U, Zacharias P (1970) Surface plasma resonances in small spherical silver and gold particles. Zeitschrift für Phys 231:128–143. https://doi.org/10.1007/BF01392504
  • Cunningham SL, Maradudin AA, Wallis RF (1974) Effect of a charge layer on the surface-plasmon-polariton dispersion curve. Phys Rev B 10:3342–3355. https://doi.org/10.1103/PhysRevB.10.3342
  • Hutley MC, Maystre D (1976) The total absorption of light by a diffraction grating. Opt Commun 19:431–436. https://doi.org/10.1016/0030-4018(76)90116-4
  • Fleischmann M, Hendra PJ, McQuillan AJ (1974) Raman spectra of pyridine adsorbed at a silver electrode. Chem Phys Lett 26:163–166. https://doi.org/10.1016/0009-2614(74)85388-1
  • Amendola V, Pilot R, Frasconi M, Maragò OM, Iatì MA (2017) Surface plasmon resonance in gold nanoparticles: a review. J Phys Condens Matter, 29
  • Rothenhäusler B, Knoll W (1988) Surface-plasmon microscopy. Nature 332:615–617. https://doi.org/10.1038/332615a0
  • Piliarik M, Vaisocherová H, Homola J (2009) Surface plasmon resonance biosensing. In: Methods in molecular biology (Clifton, N.J.), pp 65–88
  • Maier SA (2007) Plasmonics: fundamentals and applications. Springer, US, New York, NY
  • Henglein A (1989) Small-particle research: physicochemical properties of extremely small colloidal metal and semiconductor particles. Chem Rev 89:1861–1873. https://doi.org/10.1021/cr00098a010
  • Kreibig U (1986) Systems of small metal particles: optical properties and their structure dependences. Zeitschrift für Phys D Atoms, Mol Clust 3:239–249. https://doi.org/10.1007/BF01384813
  • Huo D, Kim MJ, Lyu Z, Shi Y, Wiley BJ, Xia Y (2019) One-dimensional metal nanostructures: from colloidal syntheses to applications. Chem Rev 119:8972–9073
  • Chen Y, Fan Z, Zhang Z, Niu W, Li C, Yang N, Chen B, Zhang H (2018) Two-dimensional metal nanomaterials: synthesis, properties, and applications. Chem Rev 118:6409–6455. https://doi.org/10.1021/acs.chemrev.7b00727
  • Wood JV (1994) Materials chemistry. Int Mater Rev 39:93–94. https://doi.org/10.1179/imr.1994.39.2.93
  • Dionne JA, Atwater HA (2012) Plasmonics: Metal-worthy methods and materials in nanophotonics. MRS Bull 37:717–724. https://doi.org/10.1557/mrs.2012.171
  • Fahlman BD (2011) Materials chemistry. Springer, Netherlands, Dordrecht
  • Liz-Marzán LM (2006) Tailoring surface plasmons through the morphology and assembly of metal nanoparticles. Langmuir 22:32–41. https://doi.org/10.1021/la0513353
  • Sönnichsen C, Geier S, Hecker NE, Von Plessen G, Feldmann J, Ditlbacher H, Lamprecht B, Krenn JR, Aussenegg FR, Chan VZH, Spatz JP, Möller M (2000) Spectroscopy of single metallic nanoparticles using total internal reflection microscopy. Appl Phys Lett 77:2949–2951. https://doi.org/10.1063/1.1323553
  • Thangadurai TD, Manjubaashini N, Thomas S, Maria HJ (2019) Advanced nanostructured materials for environmental remediation. Springer International Publishing, Cham
  • Leng Y (2009) Materials characterization: introduction to microscopic and spectroscopic methods. John Wiley & Sons (Asia) Pte Ltd, Singapore
  • Yao N, Lin Wang Z (2005) Handbook of microscopy for nanotechnology. Kluwer Academic Publishers, Ney York
  • Segura RA, Contreras C, Henriquez R, Häberle P, Acuña JJS, Adrian A, Alvarez P, Hevia SA (2014) Gold nanoparticles grown inside carbon nanotubes: synthesis and electrical transport measurements. Nanoscale Res Lett 9:207. https://doi.org/10.1186/1556-276X-9-207
  • Segura R, Vásquez G, Colson E, Gerbaux P, Frischmon C, Nesic A, García DE, Cabrera-Barjas G (2020) Phytostimulant properties of highly stable silver nanoparticles obtained with saponin extract from Chenopodium quinoa. J Sci Food Agric jsfa.10529. https://doi.org/10.1002/jsfa.10529
  • Ali Mansoori G (2005) Principles of nanotechnology: molecular based study of condensed matter in small systems. Princ Nanotechnol Mol Based Study Condens Matter Small Syst, 1–341. https://doi.org/10.1142/5749
  • Pareek V, Bhargava A, Gupta R, Jain N, Panwar J (2017) Synthesis and applications of noble metal nanoparticles: a review. Adv Sci Eng Med 9:527–544. https://doi.org/10.1166/asem.2017.2027
  • Feng L, Niu M, Wen Z, Hao X (2018) Recent advances of plasmonic organic solar cells: Photophysical investigations. Polymers (Basel) 10:1–33. https://doi.org/10.3390/polym10020123
  • Wang D, Pillai SC, Ho S-HH, Zeng J, Li Y, Dionysiou DD (2018) Plasmonic-based nanomaterials for environmental remediation. Appl Catal B Environ 237:721–741. https://doi.org/10.1016/j.apcatb.2018.05.094
  • Li Y, Li Z, Chi C, Shan H, Zheng L, Fang Z (2017) Plasmonics of 2D nanomaterials: properties and applications. Adv Sci 4:1–25. https://doi.org/10.1002/advs.201600430
  • Tanzid M, Sobhani A, DeSantis CJ, Cui Y, Hogan NJ, Samaniego A, Veeraraghavan A, Halas NJ (2016) Imaging through plasmonic nanoparticles. Proc Natl Acad Sci 113:5558–5563. https://doi.org/10.1073/pnas.1603536113
  • Willets KA, Wilson AJ, Sundaresan V, Joshi PB (2017) Super-resolution imaging and plasmonics. Chem Rev 117:7538–7582. https://doi.org/10.1021/acs.chemrev.6b00547
  • Duan J, Li Y, Zhou Y, Cheng Y, Chen J (2019) Near-field optics on flatland: from noble metals to van der Waals materials. Adv Phys X 4:1593051. https://doi.org/10.1080/23746149.2019.1593051
  • Umemoto A, Naka T, Alexandrov A, Yoshimoto M (2019) Super-resolution plasmonic imaging microscopy for a submicron tracking emulsion detector. Prog Theor Exp Phys 2019:063H02 . https://doi.org/10.1093/ptep/ptz033
  • Gargiulo J, Berté R, Li Y, Maier SA, Cortés E (2019) From optical to chemical hot spots in plasmonics. Acc Chem Res 52:2525–2535. https://doi.org/10.1021/acs.accounts.9b00234
  • Luan Y, McDermott L, Hu F, Fei Z (2020) Tip- and plasmon-enhanced infrared nanoscopy for ultrasensitive molecular characterizations. Phys Rev Appl 13:034020. https://doi.org/10.1103/PhysRevApplied.13.034020
  • Kumar U, Viarbitskaya S, Cuche A, Girard C, Bolisetty S, Mezzenga R, Colas des Francs G, Bouhelier A, Dujardin E (2018) Designing plasmonic eigenstates for optical signal transmission in planar channel devices. ACS Photonics 5:2328–2335 . https://doi.org/10.1021/acsphotonics.8b00137
  • Pshenichnyuk IA, Kosolobov SS, Drachev VP (2019) Towards deep integration of electronics and photonics. Appl Sci 9:4834. https://doi.org/10.3390/app9224834
  • Ataka K, Stripp ST, Heberle J (2013) Surface-enhanced infrared absorption spectroscopy (SEIRAS) to probe monolayers of membrane proteins. Biochim Biophys Acta - Biomembr 1828:2283–2293. https://doi.org/10.1016/j.bbamem.2013.04.026
  • Hwang I, Yu J, Lee J, Choi J-H, Choi D-G, Jeon S, Lee J, Jung J-Y (2018) Plasmon-enhanced infrared spectroscopy based on metamaterial absorbers with dielectric nanopedestals. ACS Photonics 5:3492–3498. https://doi.org/10.1021/acsphotonics.8b00702
  • Pu M, Ma X, Li X, Guo Y, Luo X (2017) Merging plasmonics and metamaterials by two-dimensional subwavelength structures. J Mater Chem C 5:4361–4378. https://doi.org/10.1039/C7TC00440K
  • Ogawa S, Kimata M (2017) Wavelength- or polarization-selective thermal infrared detectors for multi-color or polarimetric imaging using plasmonics and metamaterials. Materials (Basel) 10:493. https://doi.org/10.3390/ma10050493
  • Wang P, Nasir ME, Krasavin AV, Dickson W, Jiang Y, Zayats AV (2019) Plasmonic metamaterials for nanochemistry and sensing. Acc Chem Res 52:3018–3028. https://doi.org/10.1021/acs.accounts.9b00325
  • Govorov AO, Richardson HH (2007) Generating heat with metal nanoparticles. Nano Today 2:30–38. https://doi.org/10.1016/S1748-0132(07)70017-8
  • Baffou G, Quidant R (2013) Thermo-plasmonics: using metallic nanostructures as nano-sources of heat. Laser Photon Rev 7:171–187. https://doi.org/10.1002/lpor.201200003
  • Brongersma ML, Halas NJ, Nordlander P (2015) Plasmon-induced hot carrier science and technology. Nat Nanotechnol 10:25–34. https://doi.org/10.1038/nnano.2014.311
  • Liu GL, Kim J, Lu YUY, Lee LP (2006) Optofluidic control using photothermal nanoparticles. Nat Mater 5:27–32. https://doi.org/10.1038/nmat1528
  • Huang X, El-Sayed IH, Qian W, El-Sayed MA (2006) Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. J Am Chem Soc 128:2115–2120. https://doi.org/10.1021/ja057254a
  • Pissuwan D, Valenzuela SM, Cortie MB (2006) Therapeutic possibilities of plasmonically heated gold nanoparticles. Trends Biotechnol 24:62–67. https://doi.org/10.1016/j.tibtech.2005.12.004
  • Timko BP, Arruebo M, Shankarappa SA, McAlvin JB, Okonkwo OS, Mizrahi B, Stefanescu CF, Gomez L, Zhu J, Zhu A, Santamaria J, Langer R, Kohane DS (2014) Near-infrared-actuated devices for remotely controlled drug delivery. Proc Natl Acad Sci 111:1349–1354. https://doi.org/10.1073/pnas.1322651111
  • Austin LA, Mackey MA, Dreaden EC, El-Sayed MA (2014) The optical, photothermal, and facile surface chemical properties of gold and silver nanoparticles in biodiagnostics, therapy, and drug delivery. Arch Toxicol 88:1391–1417. https://doi.org/10.1007/s00204-014-1245-3
  • Strong LE, West JL (2015) Hydrogel-coated near infrared absorbing nanoshells as light-responsive drug delivery vehicles. ACS Biomater Sci Eng 1:685–692. https://doi.org/10.1021/acsbiomaterials.5b00111
  • Wang H, Agarwal P, Liang Y, Xu J, Zhao G, Tkaczuk KHR, Lu X, He X (2018) Enhanced cancer therapy with cold-controlled drug release and photothermal warming enabled by one nanoplatform. Biomaterials 180:265–278. https://doi.org/10.1016/j.biomaterials.2018.07.021
  • Homola J (2008) Surface plasmon resonance sensors for detection of chemical and biological species. Chem Rev 108:462–493. https://doi.org/10.1021/cr068107d
  • Rho W-Y, Song DH, Yang H-Y, Kim H-S, Son BS, Suh JS, Jun B-H (2018) Recent advances in plasmonic dye-sensitized solar cells. J Solid State Chem 258:271–282. https://doi.org/10.1016/j.jssc.2017.10.018
  • Zhang Y, Zhao S, Zheng J, He L (2017) Surface-enhanced Raman spectroscopy (SERS) combined techniques for high-performance detection and characterization. TrAC Trends Anal Chem 90:1–13. https://doi.org/10.1016/j.trac.2017.02.006
  • Jeong Y, Kook Y-M, Lee K, Koh W-G (2018) Metal enhanced fluorescence (MEF) for biosensors: General approaches and a review of recent developments. Biosens Bioelectron 111:102–116. https://doi.org/10.1016/j.bios.2018.04.007
  • Wong CL, Olivo M (2014) Surface plasmon resonance imaging sensors: a review. Plasmonics 9:809–824. https://doi.org/10.1007/s11468-013-9662-3
  • Liu X, Wu Z, Zhang Q, Zhao W, Zong C, Gai H (2016) Single gold nanoparticle-based colorimetric detection of picomolar mercury ion with dark-field microscopy. Anal Chem 88:2119–2124. https://doi.org/10.1021/acs.analchem.5b03653
  • Osawa M (2007) Surface-enhanced infrared absorption. Near-field optics and surface plasmon polaritons. Springer, Berlin Heidelberg, pp 163–187
  • Perez-Mayen L, Oliva J, Salas P, De La Rosa E (2016) Nanomolar detection of glucose using SERS substrates fabricated with albumin coated gold nanoparticles. Nanoscale 8:11862–11869. https://doi.org/10.1039/c6nr00163g
  • Lee J, Ahmed SR, Oh S, Kim J, Suzuki T, Parmar K, Park SS, Lee J, Park EY (2015) A plasmon-assisted fluoro-immunoassay using gold nanoparticle-decorated carbon nanotubes for monitoring the influenza virus. Biosens Bioelectron 64:311–317. https://doi.org/10.1016/j.bios.2014.09.021
  • Wei X, Chen Z, Tan L, Lou T, Zhao Y (2017) DNA-catalytically active gold nanoparticle conjugates-based colorimetric multidimensional sensor array for protein discrimination. Anal Chem 89:556–559. https://doi.org/10.1021/acs.analchem.6b04878
  • Lim WQ, Gao Z (2016) Plasmonic nanoparticles in biomedicine. Nano Today 11:168–188. https://doi.org/10.1016/j.nantod.2016.02.002
  • Song C, Li F, Guo X, Chen W, Dong C, Zhang J, Zhang J, Wang L (2019) Gold nanostars for cancer cell-targeted SERS-imaging and NIR light-triggered plasmonic photothermal therapy (PPTT) in the first and second biological windows. J Mater Chem B 7:2001–2008. https://doi.org/10.1039/C9TB00061E
  • Kim H, Chung K, Lee S, Kim DH, Lee H (2016) Near-infrared light-responsive nanomaterials for cancer theranostics. Wiley Interdiscip Rev Nanomed Nanobiotechnol 8:23–45. https://doi.org/10.1002/wnan.1347
  • Hone DC, Walker PI, Evans-Gowing R, FitzGerald S, Beeby A, Chambrier I, Cook MJ, Russell DA (2002) Generation of cytotoxic singlet oxygen via phthalocyaninel-stabilized gold nanoparticles: A potential delivery vehicle for photodynamic therapy. Langmuir 18:2985–2987. https://doi.org/10.1021/la0256230
  • Hernández-Montoto A, Gorbe M, Llopis-Lorente A, Terrés JM, Montes R, Cao-Milán R, Díaz de Greñu B, Alfonso M, Orzaez M, Marcos MD, Martínez-Máñez R, Sancenón F (2019) A NIR light-triggered drug delivery system using core–shell gold nanostars–mesoporous silica nanoparticles based on multiphoton absorption photo-dissociation of 2-nitrobenzyl PEG. Chem Commun 55:9039–9042. https://doi.org/10.1039/c9cc04260a
  • Peón-Díaz FJ, Iriarte-Mesa C, Cao-Milán R (2020) NIR-triggered doxorubicin photorelease using CuS@Albumin composites and in-vitro effect over HeLa cells. J Drug Deliv Sci Technol 57. https://doi.org/10.1016/j.jddst.2020.101642
  • Lapotko D (2011) Plasmonic nanobubbles as tunable cellular probes for cancer theranostics. Cancers (Basel) 3:802–840. https://doi.org/10.3390/cancers3010802
  • Huang J, Guo M, Ke H, Zong C, Ren B, Liu G, Shen H, Ma Y, Wang X, Zhang H, Deng Z, Chen H, Zhang Z (2015) Rational design and synthesis of γFe 2 O 3 @Au magnetic gold nanoflowers for efficient cancer theranostics. Adv Mater 27:5049–5056. https://doi.org/10.1002/adma.201501942
  • Martin-Saavedra FM, Cebrian V, Gomez L, Lopez D, Arruebo M, Wilson CG, Franceschi RT, Voellmy R, Santamaria J, Vilaboa N (2014) Temporal and spatial patterning of transgene expression by near-infrared irradiation. Biomaterials 35:8134–8143. https://doi.org/10.1016/j.biomaterials.2014.06.009
  • Kalies S, Heinemann D, Schomaker M, Escobar HM, Heisterkamp A, Ripken T, Meyer H (2014) Plasmonic laser treatment for Morpholino oligomer delivery in antisense applications. J Biophotonics 7:825–833. https://doi.org/10.1002/jbio.201300056
  • Ueno K, Oshikiri T, Sun Q, Shi X, Misawa H (2018) Solid-state plasmonic solar cells. Chem Rev 118:2955–2993. https://doi.org/10.1021/acs.chemrev.7b00235
  • Ueno K, Misawa H (2013) Surface plasmon-enhanced photochemical reactions. J Photochem Photobiol C Photochem Rev 15:31–52. https://doi.org/10.1016/j.jphotochemrev.2013.04.001
  • Wu N (2018) Plasmonic metal–semiconductor photocatalysts and photoelectrochemical cells: a review. Nanoscale 10:2679–2696. https://doi.org/10.1039/C7NR08487K
  • Gellé A, Moores A (2017) Water splitting catalyzed by titanium dioxide decorated with plasmonic nanoparticles. Pure Appl Chem 89:1817–1827. https://doi.org/10.1515/pac-2017-0711
  • Kawamura G, Matsuda A (2019) Synthesis of plasmonic photocatalysts for water splitting. Catalysts 9. https://doi.org/10.3390/catal9120982
  • Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238:37–38. https://doi.org/10.1038/238037a0
  • Sato S, White JM (1980) Photodecomposition of water over Pt/TiO2 catalysts. Chem Phys Lett 72:83–86. https://doi.org/10.1016/0009-2614(80)80246-6
  • Frank SN, Bard AJ (1977) Heterogeneous photocatalytic oxidation of cyanide ion in aqueous solutions at TiO2 powder. J Am Chem Soc 99:303–304. https://doi.org/10.1021/ja00443a081
  • Anpo M (1989) Photocatalysis on small particle TiO2 catalysts. reaction intermediates and reaction mechanisms. Res Chem Intermed 11:67–106. https://doi.org/10.1007/BF03051818
  • Kodama S, Yabuta M, Kubokawa Y (1982) Photocatalytic isomerization of butenes over TiO 2 and ZnO. Chem Lett 11:1671–1674. https://doi.org/10.1246/cl.1982.1671
  • Gupta SM, Tripathi M (2011) A review of TiO2 nanoparticles. Chinese Sci Bull 56:1639–1657. https://doi.org/10.1007/s11434-011-4476-1
  • Yang W, Prabhakar RR, Tan J, Tilley SD, Moon J (2019) Strategies for enhancing the photocurrent, photovoltage, and stability of photoelectrodes for photoelectrochemical water splitting. Chem Soc Rev 48:4979–5015. https://doi.org/10.1039/C8CS00997J
  • Zheng Z, Xie W, Huang B, Dai Y (2018) Plasmon-enhanced solar water splitting on metal-semiconductor photocatalysts. Chem - A Eur J 24:18322–18333. https://doi.org/10.1002/chem.201803705
  • Heller A (1986) Optically transparent metallic catalysts on semiconductors. Pure Appl Chem 58:1189–1192. https://doi.org/10.1351/pac198658091189
  • Heller A (1982) Hydrogen-evolving solar cells. Science (80- ) 379:1141–1148 . https://doi.org/10.1126/science.223.4641.1141
  • Nosaka Y, Norimatsu K, Miyama H (1984) The function of metals in metal-compounded semiconductor photocatalysts. Chem Phys Lett 106:128–131. https://doi.org/10.1016/0009-2614(84)87025-6
  • Baba R, Nakabayashi S, Fujishima A, Honda K (1985) Investigation of the mechanism of hydrogen evolution during photocatalytic water decomposition on metal-loaded semiconductor powders. J Phys Chem 89:1902–1905. https://doi.org/10.1021/j100256a018
  • Bard AJ, Fox MA (1995) Artificial photosynthesis: solar splitting of water to hydrogen and oxygen. Acc Chem Res 28:141–145. https://doi.org/10.1021/ar00051a007
  • Chandrasekharan N, Kamat PV (2000) Improving the Photoelectrochemical Performance of Nanostructured TiO 2 Films by Adsorption of Gold Nanoparticles †. J Phys Chem B 104:10851–10857. https://doi.org/10.1021/jp0010029
  • Subramanian V, Wolf E, Kamat PV (2001) Semiconductor-metal composite nanostructures. To what extent do metal nanoparticles improve the photocatalytic activity of TiO2 films? J Phys Chem B 105:11439–11446. https://doi.org/10.1021/jp011118k
  • Tian Y, Tatsuma T (2004) Plasmon-induced photoelectrochemistry at metal nanoparticles supported on nanoporous TiO2. Chem Commun 10:1810. https://doi.org/10.1039/b405061d
  • Schaadt DM, Feng B, Yu ET (2005) Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles. Appl Phys Lett 86:1–3. https://doi.org/10.1063/1.1855423
  • Derkacs D, Lim SH, Matheu P, Mar W, Yu ET (2006) Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles. Appl Phys Lett 89. https://doi.org/10.1063/1.2336629
  • Awazu K, Fujimaki M, Rockstuhl C, Tominaga J, Murakami H, Ohki Y, Yoshida N, Watanabe T (2008) A plasmonic photocatalyst consisting of silver nanoparticles embedded in titanium dioxide. J Am Chem Soc 130:1676–1680. https://doi.org/10.1021/ja076503n
  • Cushing SK, Li J, Meng F, Senty TR, Suri S, Zhi M, Li M, Bristow AD, Wu N (2012) Photocatalytic activity enhanced by plasmonic resonant energy transfer from metal to semiconductor. J Am Chem Soc 134:15033–15041. https://doi.org/10.1021/ja305603t
  • Huang HJ, Wu JCS, Chiang HP, Chau YFC, Lin YS, Wang YH, Chen PJ (2020) Review of experimental setups for plasmonic photocatalytic reactions. Catalysts 10:1–25. https://doi.org/10.3390/catal10010046
  • Araujo TP, Quiroz J, Barbosa ECM, Camargo PHC (2019) Understanding plasmonic catalysis with controlled nanomaterials based on catalytic and plasmonic metals. Curr Opin Colloid Interface Sci 39:110–122. https://doi.org/10.1016/j.cocis.2019.01.014
  • Zhang X, Chen YL, Liu R-S, Tsai DP (2013) Plasmonic photocatalysis. Reports Prog Phys 76. https://doi.org/10.1088/0034-4885/76/4/046401
  • Ma L, Chen S, Shao Y, Chen Y-L, Liu M-X, Li H-X, Mao Y-L, Ding S-J (2018) Recent progress in constructing plasmonic metal/semiconductor hetero-nanostructures for improved photocatalysis. Catalysts 8:634. https://doi.org/10.3390/catal8120634
  • Warren SC, Thimsen E (2012) Plasmonic solar water splitting. Energy Environ Sci 5:5133–5146. https://doi.org/10.1039/C1EE02875H
  • Rosseler O, Shankar MV, Le DuMK, Schmidlin L, Keller N, Keller V (2010) Solar light photocatalytic hydrogen production from water over Pt and Au/TiO2(anatase/rutile) photocatalysts: Influence of noble metal and porogen promotion. J Catal 269:179–190. https://doi.org/10.1016/j.jcat.2009.11.006
  • Chen JJ, Wu JCS, Wu PC, Tsai DP (2011) Plasmonic photocatalyst for H2 evolution in photocatalytic water splitting. J Phys Chem C 115:210–216. https://doi.org/10.1021/jp1074048
  • Ingram DB, Linic S (2011) Water splitting on composite plasmonic-metal/semiconductor photoelectrodes: evidence for selective plasmon-induced formation of charge carriers near the semiconductor surface. J Am Chem Soc 133:5202–5205. https://doi.org/10.1021/ja200086g
  • Mubeen S, Lee J, Singh N, Krämer S, Stucky GD, Moskovits M (2013) An autonomous photosynthetic device in which all charge carriers derive from surface plasmons. Nat Nanotechnol 8:247–251. https://doi.org/10.1038/nnano.2013.18
  • Silva CG, Juárez R, Marino T, Molinari R, García H (2011) Influence of excitation wavelength (UV or visible light) on the photocatalytic activity of titania containing gold nanoparticles for the generation of hydrogen or oxygen from water. J Am Chem Soc 133:595–602. https://doi.org/10.1021/ja1086358
  • Zhan Z, An J, Zhang H, Hansen RV, Zheng L (2014) Three-dimensional plasmonic photoanodes based on Au-embedded TiO 2 structures for enhanced visible-light water splitting. ACS Appl Mater Interfaces 6:1139–1144. https://doi.org/10.1021/am404738a
  • Ge MZ, Cao CY, Li SH, Tang YX, Wang LN, Qi N, Huang JY, Zhang KQ, Al-Deyab SS, Lai YK (2016) In situ plasmonic Ag nanoparticle anchored TiO2 nanotube arrays as visible-light-driven photocatalysts for enhanced water splitting. Nanoscale 8:5226–5234. https://doi.org/10.1039/c5nr08341a
  • Zhang J, Jin X, Morales-Guzman PI, Yu X, Liu H, Zhang H, Razzari L, Claverie JP (2016) Engineering the absorption and field enhancement properties of Au-TiO2 nanohybrids via whispering gallery mode resonances for photocatalytic water splitting. ACS Nano 10:4496–4503. https://doi.org/10.1021/acsnano.6b00263
  • Liu Z, Hou W, Pavaskar P, Aykol M, Cronin SB (2011) Plasmon resonant enhancement of photocatalytic water splitting under visible illumination. Nano Lett 11:1111–1116. https://doi.org/10.1021/nl104005n
  • Enoch S, Bonod N (2012) Plasmonics. Springer, Berlin Heidelberg, Berlin, Heidelberg
  • Zhu Y, Inada H, Hartschuh A, Shi L, Della Pia A, Costantini G, Vázquez de Parga AL, Miranda R, Barbier A, Mocuta C, Belkhou R, Bhushan B, Hoo JH, Park KS, Baskaran R, Böhringer KF, Lu W, Nosonovsky M, Ham M-H, Boghossian AA, Choi JH, Strano MS, Lang A, Habegger ML, Motta P, Bhushan B, Bachmann T, Wagner H, Brenner DW, Chen J, Shakiba N, Tan Q, Sun Y, Greer JR, Laver M, Khaled SM, Parodi A, Tasciotti E, Dave BC, Lockwood SB, Musicanti C, Gasco P, Vollrath F, Booth A, McIntosh AC, Beheshti N, Walker R, Larsson LU, Copestake A, Hwang H, Cho Y-K, Chen J, Chu M, Gordijo CR, Wu XY, Sun Y, Kolle M, Steiner U, Wang S-W, Ceyssens F, Puers R, Han X, Mao S, Zhang Z, Jiang L, Lin L, Ragan R, Lughi V, Drummond C, Ruths M, Mu W, Ketterson JB, Berini P, Zhao Y-P, Wang F-C, Prakash S, Henley SJ, Anguita JV, Silva SRP, Chanana M, Mateo C, Salgueirino V, Correa-Duarte MA, Kar S, Talapatra S, Calvo Fuentes J, Rivas J, López-Quintela MA, Tsuda S (2012) Surface plasmon nanophotonics. Encyclopedia of nanotechnology. Springer, Netherlands, Dordrecht, pp 2591–2591
  • Dobson PJ (1984) Absorption and scattering of light by small particles. Phys Bull 35:104–104. https://doi.org/10.1088/0031-9112/35/3/025
  • Kreibig U, Vollmer M (1995) Optical properties of metal clusters. Springer, Berlin Heidelberg, Berlin, Heidelberg
  • Greffet JJ (2012) Introduction to surface plasmon theory. Springer Ser Opt Sci 167:105–148. https://doi.org/10.1007/978-3-642-28079-5_4
  • Kelly KL, Coronado E, Zhao LL, Schatz GC (2003) The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J Phys Chem B 107:668–677. https://doi.org/10.1021/jp026731y
  • Frenkel AI, Nemzer S, Pister I, Soussan L, Harris T, Sun Y, Rafailovich MH (2005) Size-controlled synthesis and characterization of thiol-stabilized gold nanoparticles. J Chem Phys 123. https://doi.org/10.1063/1.2126666
  • Schatz GC (2001) Electrodynamics of nonspherical noble metal nanoparticles and nanoparticle aggregates. J Mol Struct THEOCHEM 573:73–80. https://doi.org/10.1016/S0166-1280(01)00545-0
  • Schwartzberg AM, Olson TY, Talley CE, Zhang JZ (2006) Synthesis, characterization, and tunable optical properties of hollow gold nanospheres †. J Phys Chem B 110:19935–19944. https://doi.org/10.1021/jp062136a
  • Chauhan A, Rastogi M, Scheier P, Bowen C, Kumar RV, Vaish R (2018) Janus nanostructures for heterogeneous photocatalysis. Appl Phys Rev 5. https://doi.org/10.1063/1.5039926
  • Yao GY, Zhao ZY, Liu QL, Dong XD, Zhao QM (2020) Theoretical calculations for localized surface plasmon resonance effects of Cu/TiO2 nanosphere: Generation, modulation, and application in photocatalysis. Sol Energy Mater Sol Cells 208. https://doi.org/10.1016/j.solmat.2019.110385
  • Wang J, Jia X, Wang Z, Liu W, Zhu X, Huang Z, Yu H, Yang Q, Sun Y, Wang Z, Qu S, Lin J, Jin P, Wang Z (2020) Ultrafast plasmonic lasing from a metal/semiconductor interface. Nanoscale 12:16403–16408. https://doi.org/10.1039/d0nr02330b
  • Li Z, Yao K, Xia F, Shen S, Tian J, Liu Y (2015) Graphene plasmonic metasurfaces to steer infrared light. Sci Rep 5:12423. https://doi.org/10.1038/srep12423
  • Blaber MG, Arnold MD, Ford MJ (2010) A review of the optical properties of alloys and intermetallics for plasmonics. J Phys Condens Matter 22. https://doi.org/10.1088/0953-8984/22/14/143201
  • Walther A, Müller AHE (2013) Janus particles: synthesis, self-assembly, physical properties, and applications. Chem Rev 113:5194–5261. https://doi.org/10.1021/cr300089t
  • Papavassiliou GC (1979) Optical properties of small inorganic and organic metal particles. Prog Solid State Chem 12:185–271. https://doi.org/10.1016/0079-6786(79)90001-3
  • Alexander DTL, Forrer D, Rossi E, Lidorikis E, Agnoli S, Bernasconi GD, Butet J, Martin OJF, Amendola V (2019) Electronic structure-dependent surface plasmon resonance in single Au-Fe nanoalloys. Nano Lett 19:5754–5761. https://doi.org/10.1021/acs.nanolett.9b02396
  • Rechberger W, Hohenau A, Leitner A, Krenn JR, Lamprecht B, Aussenegg FR (2003) Optical properties of two interacting gold nanoparticles. Opt Commun 220:137–141. https://doi.org/10.1016/S0030-4018(03)01357-9
  • Chung T, Lee SY, Song EY, Chun H, Lee B (2011) Plasmonic nanostructures for nano-scale bio-sensing. Sensors 11:10907–10929. https://doi.org/10.3390/s111110907
  • Teixeira I, Quiroz J, Homsi M, Camargo P (2020) An Overview of the Photocatalytic H2 Evolution by Semiconductor-Based Materials for Nonspecialists. J Braz Chem Soc 31:211–229 . https://doi.org/10.21577/0103-5053.20190255
  • Liu J, Liu Y, Liu N, Han Y, Zhang X, Huang H, Lifshitz Y, Lee ST, Zhong J, Kang Z (2015) Metal-free efficient photocatalyst for stable visible water splitting via a two-electron pathway. Science (80- ) 347:970–974 . https://doi.org/10.1126/science.aaa3145
  • Cheng WH, Richter MH, May MM, Ohlmann J, Lackner D, Dimroth F, Hannappel T, Atwater HA, Lewerenz HJ (2018) Monolithic photoelectrochemical device for direct water splitting with 19% efficiency. ACS Energy Lett 3:1795–1800. https://doi.org/10.1021/acsenergylett.8b00920
  • Jia J, Seitz LC, Benck JD, Huo Y, Chen Y, Ng JWD, Bilir T, Harris JS, Jaramillo TF (2016) Solar water splitting by photovoltaic-electrolysis with a solar-to-hydrogen efficiency over 30%. Nat Commun 7:1–6. https://doi.org/10.1038/ncomms13237
  • Chen S, Huang D, Xu P, Xue W, Lei L, Cheng M, Wang R, Liu X, Deng R (2020) Semiconductor-based photocatalysts for photocatalytic and photoelectrochemical water splitting: will we stop with photocorrosion? J Mater Chem A 8:2286–2322. https://doi.org/10.1039/C9TA12799B
  • Chen Z, Dinh HN, Miller E (2013) Photoelectrochemical water splitting. Springer, New York, NY
  • Peter LM (2015) Photoelectrochemical water splitting. A Status Assessment. Electroanalysis 27:864–871. https://doi.org/10.1002/elan.201400587
  • Dotan H, Mathews N, Hisatomi T, Grätzel M, Rothschild A (2014) On the solar to hydrogen conversion efficiency of photoelectrodes for water splitting. J Phys Chem Lett 5:3330–3334
  • Chu D, Yuan X, Qin G, Xu M, Zheng P, Lu J, Zha L (2008) Efficient carbon-doped nanostructured TiO2 (anatase) film for photoelectrochemical solar cells. J Nanoparticle Res 10:357–363. https://doi.org/10.1007/s11051-007-9241-7
  • Zhu Z, Kao CT, Tang BH, Chang WC, Wu RJ (2016) Efficient hydrogen production by photocatalytic water-splitting using Pt-doped TiO2 hollow spheres under visible light. Ceram Int 42:6749–6754. https://doi.org/10.1016/j.ceramint.2016.01.047
  • Jiang C, Moniz SJA, Wang A, Zhang T, Tang J (2017) Photoelectrochemical devices for solar water splitting—materials and challenges. Chem Soc Rev 46:4645–4660. https://doi.org/10.1039/C6CS00306K
  • Chen Y, Feng X, Liu Y, Guan X, Burda C, Guo L (2020) Metal oxide-based tandem cells for self-biased photoelectrochemical water splitting. ACS Energy Lett 5:844–866. https://doi.org/10.1021/acsenergylett.9b02620
  • Hwang YJ, Boukai A, Yang P (2009) High density n-S/n-TiO 2 core/shell nanowire arrays with enhanced photoactivit. Nano Lett 9:410–415. https://doi.org/10.1021/nl8032763
  • Pan J, Shen S, Zhou W, Tang J, Ding H, Wang J, Chen L, Au CT, Yin SF (2020) Recent progress in photocatalytic hydrogen evolution. Wuli Huaxue Xuebao/ Acta Phys - Chim Sin 36. https://doi.org/10.3866/PKU.WHXB201905068
  • Yu H, Quan X, Chen S, Zhao H (2007) TiO2-multiwalled carbon nanotube heterojunction arrays and their charge separation capability. J Phys Chem C 111:12987–12991. https://doi.org/10.1021/jp0728454
  • Hamandi M, Meksi M, Kochkar H (2015) Nanoscale advances of carbon-titanium dioxide nanomaterials in photocatalysis applications. Rev Nanosci Nanotechnol 4:108–134. https://doi.org/10.1166/rnn.2015.1065
  • Liu Y, Ji M, Wang P (2019) Recent advances in small copper sulfide nanoparticles for molecular imaging and tumor therapy. Mol Pharm 16:3322–3332. https://doi.org/10.1021/acs.molpharmaceut.9b00273
  • Lv H, Wang C, Li G, Burke R, Krauss TD, Gao Y, Eisenberg R (2017) Semiconductor quantum dot-sensitized rainbow photocathode for effective photoelectrochemical hydrogen generation. Proc Natl Acad Sci U S A 114:11297–11302. https://doi.org/10.1073/pnas.1712325114
  • Khan ME, Cho MH (2019) Surface plasmon-based nanomaterials as photocatalyst. In: Naushad M, Rajendran S, Gracia F (eds) Advanced nanostructured materials for environmental remediation. Springer International Publishing, Cham, pp 173–187
  • Chiu I, Lin SX, Kao CT, Wu RJ (2014) Promoting hydrogen production by loading PdO and Pt on N-TiO2 under visible light. Int J Hydrogen Energy 39:14574–14580. https://doi.org/10.1016/j.ijhydene.2014.07.034
  • Yen YC, Chen JA, Ou S, Chen YS, Lin KJ (2017) Plasmon-enhanced photocurrent using gold nanoparticles on a three-dimensional TiO2 nanowire-web electrode. Sci Rep 7:1–8. https://doi.org/10.1038/srep42524
  • Kumaravel V, Mathew S, Bartlett J, Pillai SC (2019) Photocatalytic hydrogen production using metal doped TiO2: A review of recent advances. Appl Catal B Environ 244:1021–1064. https://doi.org/10.1016/j.apcatb.2018.11.080
  • Hakamizadeh M, Afshar S, Tadjarodi A, Khajavian R, Fadaie MR, Bozorgi B (2014) Improving hydrogen production via water splitting over Pt/TiO 2/activated carbon nanocomposite. Int J Hydrogen Energy 39:7262–7269. https://doi.org/10.1016/j.ijhydene.2014.03.048
  • Grätzel M (2003) Dye-sensitized solar cells. J Photochem Photobiol C Photochem Rev 4:145–153. https://doi.org/10.1016/S1389-5567(03)00026-1
  • Mubeen S, Hernandez-Sosa G, Moses D, Lee J, Moskovits M (2011) Plasmonic photosensitization of a wide band gap semiconductor: Converting plasmons to charge carriers. Nano Lett 11:5548–5552. https://doi.org/10.1021/nl203457v
  • Naldoni A, Guler U, Wang Z, Marelli M, Malara F, Meng X, Besteiro LV, Govorov AO, Kildishev AV, Boltasseva A, Shalaev VM (2017) Broadband hot-electron collection for solar water splitting with plasmonic titanium nitride. Adv Opt Mater 5:1601031. https://doi.org/10.1002/adom.201601031
  • Duchene JS, Sweeny BC, Johnston-Peck AC, Su D, Stach EA, Wei WD (2014) Prolonged hot electron dynamics in plasmonic-metal/semiconductor heterostructures with implications for solar photocatalysis. Angew Chemie - Int Ed 53:7887–7891. https://doi.org/10.1002/anie.201404259
  • Zhang P, Wang T, Gong J (2015) Mechanistic understanding of the plasmonic enhancement for solar water splitting. Adv Mater 27:5328–5342. https://doi.org/10.1002/adma.201500888
  • Nishijima Y, Ueno K, Kotake Y, Murakoshi K, Inoue H, Misawa H (2012) Near-infrared plasmon-assisted water oxidation. J Phys Chem Lett 3:1248–1252. https://doi.org/10.1021/jz3003316
  • Long R, Li Y, Song L, Xiong Y (2015) Coupling solar energy into reactions: materials design for surface plasmon-mediated catalysis. Small 11:3873–3889. https://doi.org/10.1002/smll.201403777
  • Aslam U, Rao VG, Chavez S, Linic S (2018) Catalytic conversion of solar to chemical energy on plasmonic metal nanostructures. Nat Catal 1:656–665. https://doi.org/10.1038/s41929-018-0138-x
  • Robatjazi H, Weinberg D, Swearer DF, Jacobson C, Zhang M, Tian S, Zhou L, Nordlander P, Halas NJ (2019) Metal-organic frameworks tailor the properties of aluminum nanocrystals. Sci Adv 5:eaav5340 . https://doi.org/10.1126/sciadv.aav5340
  • Miao B, Iqbal A, Bevan KH (2019) Utilizing band diagrams to interpret the photovoltage and photocurrent in photoanodes: a semiclassical device modeling study. J Phys Chem C 123:28593–28603. https://doi.org/10.1021/acs.jpcc.9b07536
  • Cheng X, Gu S, Centeno A, Dawson G (2019) Plasmonic enhanced Cu2O-Au-BFO photocathodes for solar hydrogen production. Sci Rep 9:5140. https://doi.org/10.1038/s41598-019-41613-3
  • Ma L, Chen Y-L, Yang D-J, Li H-X, Ding S-J, Xiong L, Qin P-L, Chen X-B (2020) Multi-interfacial plasmon coupling in multigap (Au/AgAu)@CdS core–shell hybrids for efficient photocatalytic hydrogen generation. Nanoscale 12:4383–4392. https://doi.org/10.1039/C9NR09696E
  • Lal NN, Soares BF, Sinha JK, Huang F, Mahajan S, Bartlett PN, Greenham NC, Baumberg JJ (2011) Enhancing solar cells with localized plasmons in nanovoids. Opt Express 19:11256. https://doi.org/10.1364/OE.19.011256
  • Sakai K, Nomura K, Tanaka Y, Sasaki K (2013) Near-field optical response of periodically arrayed plasmonic nanogap antennas. J Appl Phys 114. https://doi.org/10.1063/1.4813129
  • Pavliuk MV, Fernandes AB, Abdellah M, Fernandes DLAA, Machado CO, Rocha I, Hattori Y, Paun C, Bastos EL, Sá J (2017) Nano-hybrid plasmonic photocatalyst for hydrogen production at 20% efficiency. Sci Rep 7:1–9. https://doi.org/10.1038/s41598-017-09261-7
  • Chen K, Ding SJ, Luo ZJ, Pan GM, Wang JH, Liu J, Zhou L, Wang QQ (2018) Largely enhanced photocatalytic activity of Au/XS2/Au (X = Re, Mo) antenna-reactor hybrids: Charge and energy transfer. Nanoscale 10:4130–4137. https://doi.org/10.1039/c7nr09362d
  • Wang D, Sherman BD, Farnum BH, Sheridan MV, Marquard SL, Eberhart MS, Dares CJ, Meyer TJ (2017) Plasmon-enhanced light-driven water oxidation by a dye-sensitized photoanode. Proc Natl Acad Sci 114:9809–9813. https://doi.org/10.1073/pnas.1708336114
  • Li L, Feng K, Huang D, Wang K, Li Y, Guo Z, Ng YH, Jiang F (2020) Surface plasmon resonance effect of a Pt-nano-particles-modified TiO2 nanoball overlayer enables a significant enhancement in efficiency to 3.5% for a Cu2ZnSnS4-based thin film photocathode used for solar water splitting. Chem Eng J 396:125264 . https://doi.org/10.1016/j.cej.2020.125264
  • Ghosh D, Roy K, Sarkar K, Devi P, Kumar P (2020) Surface plasmon-enhanced carbon dot-embellished multifaceted Si(111) nanoheterostructure for photoelectrochemical water splitting. ACS Appl Mater Interfaces 12:28792–28800. https://doi.org/10.1021/acsami.0c05591
  • Zhang X, Wang X, Yi X, Liu L, Ye J, Wang D (2020) Metal-reduced WO 3–x electrodes with tunable plasmonic resonance for enhanced photoelectrochemical water splitting. ACS Appl Energy Mater 3:3569–3576. https://doi.org/10.1021/acsaem.0c00086
  • Wang D, Pierre A, Kibria MG, Cui K, Han X, Bevan KH, Guo H, Paradis S, Hakima A-R, Mi Z (2011) Wafer-level photocatalytic water splitting on GaN nanowire arrays grown by molecular beam epitaxy. Nano Lett 11:2353–2357. https://doi.org/10.1021/nl2006802
  • Kibria MG, Zhao S, Chowdhury FA, Wang Q, Nguyen HPT, Trudeau ML, Guo H, Mi Z (2014) Tuning the surface Fermi level on p-type gallium nitride nanowires for efficient overall water splitting. Nat Commun 5:3825. https://doi.org/10.1038/ncomms4825
  • Kibria MG, Qiao R, Yang W, Boukahil I, Kong X, Chowdhury FA, Trudeau ML, Ji W, Guo H, Himpsel FJ, Vayssieres L, Mi Z (2016) Atomic-scale origin of long-term stability and high performance of p -GaN nanowire arrays for photocatalytic overall pure water splitting. Adv Mater 28:8388–8397. https://doi.org/10.1002/adma.201602274
  • Alvi NH, Soto Rodriguez PED, Kumar P, Gómez VJ, Aseev P, Alvi AH, Alvi MA, Willander M, Nötzel R (2014) Photoelectrochemical water splitting and hydrogen generation by a spontaneously formed InGaN nanowall network. Appl Phys Lett 104. https://doi.org/10.1063/1.4881324
  • Alvi N ul H, Soto Rodriguez PED, Aseev P, Gómez VJ, Alvi A ul H, Hassan W ul, Willander M, Nötzel R (2015) InN/InGaN quantum dot photoelectrode: Efficient hydrogen generation by water splitting at zero voltage. Nano Energy 13:291–297 . https://doi.org/10.1016/j.nanoen.2015.02.017
  • Alvi N ul H, Soto Rodriguez PED, Hassan W ul, Zhou G, Willander M, Nötzel R (2019) Unassisted water splitting with 9.3% efficiency by a single quantum nanostructure photoelectrode. Int J Hydrogen Energy 44:19650–19657. https://doi.org/10.1016/j.ijhydene.2019.06.008
  • Soto Rodriguez PED, Nash VC, Aseev P, Gómez VJ, Kumar P, Alvi NUH, Sánchez A, Villalonga R, Pingarrón JM, Nötzel R (2015) Electrocatalytic oxidation enhancement at the surface of InGaN films and nanostructures grown directly on Si(111). Electrochem commun 60:158–162. https://doi.org/10.1016/j.elecom.2015.09.003
  • Kumar P, Devi P, Jain R, Shivaprasad SM, Sinha RK, Zhou G, Nötzel R (2019) Quantum dot activated indium gallium nitride on silicon as photoanode for solar hydrogen generation. Commun Chem 2:4. https://doi.org/10.1038/s42004-018-0105-0
  • Sang Y, Liu B, Tao T, Jiang D, Wu Y, Chen X, Luo W, Ye J, Zhang R (2020) Plasmon-enhanced photoelectrochemical water splitting by InGaN/GaN nano-photoanodes. Semicond Sci Technol 35. https://doi.org/10.1088/1361-6641/ab615a
  • Ghobadi TGU, Ghobadi A, Soydan MC, Vishlaghi MB, Kaya S, Karadas F, Ozbay E (2020) Strong light-matter interactions in Au plasmonic nanoantennas coupled with prussian blue catalyst on BiVO4 for photoelectrochemical water splitting. Chemsuschem 13:2577–2588. https://doi.org/10.1002/cssc.202000294
  • Guselnikova O, Trelin A, Miliutina E, Elashnikov R, Sajdl P, Postnikov P, Kolska Z, Svorcik V, Lyutakov O (2020) Plasmon-induced water splitting—through flexible hybrid 2D architecture up to hydrogen from seawater under NIR light. ACS Appl Mater Interf 12:28110–28119. https://doi.org/10.1021/acsami.0c04029