Fairness and Robustness in Machine Learning

  1. Khandpur Singh, Ashneet
Dirigida per:
  1. Josep Domingo Ferrer Director/a
  2. Alberto Blanco Justicia Director/a

Universitat de defensa: Universitat Rovira i Virgili

Fecha de defensa: 18 de d’abril de 2023

Tribunal:
  1. Pino Caballero Gil Presidenta
  2. Maria Bras Amorós Secretari/ària
  3. Javier Parra Arnau Vocal

Tipus: Tesi

Teseo: 807226 DIALNET lock_openTDX editor

Resum

Els models d'aprenentatge automàtic aprenen d'aquestes dades per modelar entorns i problemes concrets, i predir esdeveniments futurs, però si les dades presenten biaixos, donaran lloc a prediccions i conclusions esbiaixades. Per tant, és fonamental assegurar-se que llurs prediccions són justes i no es basen en la discriminació contra grups o comunitats específics. L'aprenentatge federat, una forma d'aprenentatge automàtic distribuït, cal equipar-se amb tècniques per afrontar aquest gran repte interdisciplinari. L'aprenentatge federat proporciona millors garanties de privadesa als clients participants que no pas l'aprenentatge centralitzat. Tot i així, l'aprenentatge federat és vulnerable a atacs en els quals clients maliciosos presenten actualitzacions incorrectes per tal d'evitar que el model convergeixi o, més subtilment, per introduir biaixos arbitraris en les prediccions o decisions dels models (enverinament o poisoning). Un desavantatge d'aquestes tècniques de enverinament és que podrien conduir a la discriminació de grups minoritaris, les dades dels quals són significativament i legítimament diferents de les de la majoria dels clients.En aquest treball, ens esforcem per trobar un equilibri entre combatre els atacs d'enverinament i acomodar la diversitat, tot per a ajudar a aprendre models d'aprenentatge federats més justos i menys discriminatoris. D'aquesta manera, evitem l'exclusió de clients de minories legítimes i alhora garantim la detecció d'atacs d'enverinament. D'altra banda, per tal de desenvolupar models justos i verificar-ne la imparcialitat en l'àrea d'aprenentatge automàtic, proposem un mètode basat en exemples contrafactuals que detecta qualsevol biaix en el model de ML, independentment del tipus de dades utilitzat en el model.