Entrenamiento Basado en Realidad Aumentada para Mejorar las Habilidades Espaciales y la Consiguiente Mejora del Rendimiento Académico en Estudiantes de Ingeniería

  1. Gómez Tone, Hugo
  2. Martin-Gutierrez, Jorge 1
  3. Valencia-Anci, Betty
  1. 1 Universidad de La Laguna
    info

    Universidad de La Laguna

    San Cristobal de La Laguna, España

    ROR https://ror.org/01r9z8p25

Zeitschrift:
Digital Education Review

ISSN: 2013-9144

Datum der Publikation: 2022

Seiten: 306-322

Art: Artikel

DOI: 10.1344/DER.2022.41.306-322 GOOGLE SCHOLAR lock_openOpen Access editor

Andere Publikationen in: Digital Education Review

Zusammenfassung

It has been shown that Spatial Skills is an important attribute and characteristic that every person interested in Science, Technology, Engineering and Math (STEM) must have, but also has a direct relationship with the success rates of first-year university engineering students. The purpose of this research is to analyze the levels of Spatial Skills that first-year Civil Engineering students at a Peruvian university have and determine the improvement of these levels through a short training based on Augmented Reality (AR) and compare it with academic performance. Sixty-two students were recruited out of a total population of 134 and the experimental and control group consisted of 31 students each. It was considered the Spatial Relationships and the Spatial Visualization components to be measured with the Mental Rotation Test and Differential Aptitude Test. To measure academic performance, the grading data of four subjects were used. After training, a statistically significant improvement in the Spatial Skill levels of the experimental group was evidenced. Regarding academic performance, there has been an improvement in students who have undergone specific training to improve their spatial skills. The conclusion is that a short and specific training based on AR not only improves Spatial Skills but also helps the academic performance in first-year engineering subjects.

Bibliographische Referenzen

  • Acevedo, D., Torres, J. D., y Jiménez, M. J. (2015). Factores Asociados a la Repetición de Cursos y Retraso en la Graduación en Programas de Ingeniería de la Universidad de Cartagena, en Colombia. Formación universitaria, 8(2), 35-42.
  • Alvarez, F. J. A., Parra, E. B. B., y Montes Tubio, F. (2017). Improving graphic expression training with 3D models. Journal of Visualization, 20(4), 889-904. https://doi.org/10.1007/s12650-017-0424-8
  • Arrieta, I., y Medrano, M. C. (2015). Un Análisis de la Capacidad Espacial en Estudios de Ingeniería Técnica. PNA, 9(2).
  • Azuma, R., Baillot, Y., Behringer, R., Feiner, S., Julier, S., y MacIntyre, B. (2001). Recent advances in augmented reality. IEEE computer graphics and applications, 21(6), 34-47.
  • Baenninger, M., y Newcombe, N. (1989). The role of experience in spatial test performance: A meta-analysis. Sex roles, 20(5-6), 327-344.
  • Barfield, W. (2015). Fundamentals of wearable computers and augmented reality. CRC press.
  • Bennett, G. K., Seashore, H. G., y Wesman, A. G. (1947). The Differential Aptitude Tests (Spanish Of, Vol. 35). TEA Ediciones. https://doi.org/10.1002/j.2164-4918.1956.tb01710.x
  • Buckley, J., Seery, N., y Canty, D. (2019). Spatial cognition in engineering education: Developing a spatial ability framework to support the translation of theory into practice. European Journal of Engineering Education, 44(1-2), 164-178. https://doi.org/10.1080/03043797.2017.1327944
  • Burton, L. J., y Dowling, D. G. (2009). Key factors that influence engineering students’ academic success: A longitudinal study. Proceedings of the Research in Engineering Education Symposium (REES 2009), 1-6.
  • Carroll, J. B. (1993). Human cognitive abilities. A survey of factor-analytic studies. Cambridge University Press.
  • Charles, S., Jaillet, A., Peyret, N., Jeannin, L., y Rivière, A. (2020). Exploring the relationship between spatial ability, individual characteristics and academic performance of first-year students in a French engineering school. SEFI 47th Annual Conference: Varietas Delectat... Complexity is the New Normality, Proceedings, 235-248.
  • Duesbury, R. T., y O’Neil Jr, H. F. (1996). Effect of type of practice in a computer-aided design environment in visualizing three-dimensional objects from two-dimensional orthographic projections. The Journal of Applied Psychology, 81(3), 249-260.
  • Gómez-Tone, H. C. (2019). Impacto de la Enseñanza de la Geometría Descriptiva usando Archivos 3D-PDF como Entrenamiento de la Habilidad Espacial de Estudiantes de Ingeniería Civil en el Perú. Formación universitaria, 12(1), 73-82. https://doi.org/10.4067/S0718-50062019000100073
  • Gómez-Tone, H. C., Martin-Gutierrez, J., Valencia Anci, L., y Mora Luis, C. E. (2020). International comparative pilot study of spatial skill development in engineering students through autonomous augmented reality-based training. Symmetry, 12(9), 1401.
  • Hegarty, M., y Waller, D. (2004). A dissociation between mental rotation and perspective-taking spatial abilities. Intelligence, 32(2), 175-191.
  • Ibáñez, M.-B., y Delgado-Kloos, C. (2018). Augmented reality for STEM learning: A systematic review. Computers y Education, 123, 109-123.
  • Larsen, Y. C., Buchholz, H., Brosda, C., y Bogner, F. X. (2011). Evaluation of a portable and interactive augmented reality learning system by teachers and students. Augmented Reality in Education, 2011, 47-56.
  • Linn, M. C., y Petersen, A. C. (1985). Emergence and characterization of sex differences in spatial ability: A meta-analysis. En Child Development (Vol. 56, Número 6, pp. 1479-1498). Blackwell Publishing. https://doi.org/10.2307/1130467
  • Lohman, D. F. (1996). Spatial ability and g. En Human abilities: Their nature and measurement. (pp. 97-116). Lawrence Erlbaum Associates, Inc.
  • Lubinski, D. (2010). Spatial ability and STEM: A sleeping giant for talent identification and development. Personality and Individual Differences, 49(4), 344-351.
  • Martín Gutiérrez, J., Contero González, M., y Alcañiz Raya, M. (s. f.). Curso para la mejora de la capacidad espacial—Ldelibros. Recuperado 5 de mayo de 2021, de https://www.ldlibros.com/catalogo-libros-ldelibros/245/Curso-para-la-mejora-de-la-capacidad-espacial
  • Martin-Gutiérrez, J., Garcia-Dominguez, M., González, C. R., y Corredeguas, M. C. M. (2013). Using different methodologies and technologies to training spatial skill in Engineering Graphic subjects. https://doi.org/10.1109/FIE.2013.6684848
  • Martín-Gutiérrez, J., Gil, F. A., Contero, M., y Saorín, J. L. (2013). Dynamic three-dimensional illustrator for teaching descriptive geometry and training visualisation skills. Computer Applications in Engineering Education, 21(1), 8-25. https://doi.org/10.1002/cae.20447
  • Martín-Gutiérrez, J., y González, M. M. A. (2016). Ranking and predicting results for different training activities to develop spatial abilities. En Visual-spatial Ability in STEM Education: Transforming Research into Practice. https://doi.org/10.1007/978-3-319-44385-0_11
  • Martín-Gutiérrez, J., y Meneses Fernández, M. D. (2014). Applying augmented reality in engineering education to improve academic performance y student motivation. The International journal of engineering education, 30(3), 625-635.
  • Martín-Gutiérrez, J., Saorín, J. L., Contero, M., Alcañiz, M., Pérez-López, D. C., y Ortega, M. (2010). Design and validation of an augmented book for spatial abilities development in engineering students. Computers y Graphics, 34(1), 77-91.
  • McGee, M. G. (1979). Human spatial abilities: Psychometric studies and environmental, genetic, hormonal, and neurological influences. En Psychological Bulletin (Vol. 86, Número 5, pp. 889-918). American Psychological Association. https://doi.org/10.1037/0033-2909.86.5.889
  • Melgosa Pedrosa, C., Ramos Barbero, B., y Baños García, M. E. (2015). Interactive learning management system to develop spatial visualization abilities. Computer Applications in Engineering Education, 23(2), 203-216. https://doi.org/10.1002/cae.21590
  • Moen, K. C., Beck, M. R., Saltzmann, S. M., Cowan, T. M., Burleigh, L. M., Butler, L. G., Ramanujam, J., Cohen, A. S., y Greening, S. G. (2020). Strengthening spatial reasoning: Elucidating the attentional and neural mechanisms associated with mental rotation skill development. Cognitive Research: Principles and Implications, 5(1). https://doi.org/10.1186/s41235-020-00211-y
  • Mohler, J. L. (2006). Computer Graphics Education: Where and How Do We Develop Spatial Ability? Eurographics 2006, 1-8.
  • Potter, C., Van Der Merwe, E., Kaufman, W., y Delacour, J. (2006). A longitudinal evaluative study of student difficulties with engineering graphics. European Journal of Engineering Education, 31(2), 201-214. https://doi.org/10.1080/03043790600567894
  • Roca-González, C., Martin-Gutierrez, J., García-Dominguez, M., y Carrodeguas, M. del C. M. (2017). Virtual technologies to develop visual-spatial ability in engineering students. Eurasia Journal of Mathematics, Science and Technology Education, 13(2), 441-468. https://doi.org/10.12973/eurasia.2017.00625a
  • Roca-Gonzalez, C., Martín-Gutiérrez, J., Mato Corredeguas, C., y García-Domínguez, M. (2014). Training to improve spatial orientation in engineering students using virtual environments. En Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics): Vol. 8526 LNCS (Número PART 2). https://doi.org/10.1007/978-3-319-07464-1_9
  • Sáez López, J. M., Cózar Gutierrez, R., y Domínguez-Garrido, M.-C. (2018). Realidad aumentada en Educación Primaria: Comprensión de elementos artísticos y aplicación didáctica en ciencias sociales. Digital Education Review, 59-75.
  • Sáez-López, J. M., Cózar-Gutiérrez, R., González-Calero, J. A., y Gómez Carrasco, C. J. (2020). Augmented reality in higher education: An evaluation program in initial teacher training. Education Sciences, 10(2), 26.
  • Šafhalter, A., Glodež, S., Šorgo, A., y Ploj Virtič, M. (2020). Development of spatial thinking abilities in engineering 3D modeling course aimed at lower secondary students. International Journal of Technology and Design Education. https://doi.org/10.1007/s10798-020-09597-8
  • Samsudin, K., Rafi, A., y Hanif, A. S. (2011). Training in Mental Rotation and Spatial Visualization and Its Impact on Orthographic Drawing Performance. Journal of Educational Technology y Society, 14(1), 179-186.
  • Sánchez, H., y Reyes, C. (2003). Psicología del aprendizaje en educación superior. Visión Universitaria, Lima.
  • Schneider, W. J., y McGrew, K. S. (2012). The Cattell-Horn-Carroll model of intelligence. En Contemporary intellectual assessment: Theories, tests, and issues, 3rd ed (pp. 99-144). The Guilford Press.
  • Sırakaya, M., y Alsancak Sırakaya, D. (2020). Augmented reality in STEM education: A systematic review. Interactive Learning Environments, 1-14.
  • Sorby, S. A. (2005). Assessment of a «new and improved» course for the development of 3-D spatial skills. En Engineering Design Graphics Journal (Vol. 69, Número 3, pp. 6-13).
  • Sorby, S. A. (2007). Developing 3D spatial skills for engineering students. Australasian Journal of Engineering Education, 13(1), 1-11.
  • Sorby, S. A. (2009). Educational Research in Developing 3‐D Spatial Skills for Engineering Students. International Journal of Science Education, 31(3), 459-480. https://doi.org/10.1080/09500690802595839
  • Sorby, S. A., y Baartmans, B. J. (2000). The development and assessment of a course for enhancing the 3‐D spatial visualization skills of first year engineering students. Journal of Engineering Education, 89(3), 301-307.
  • Sorby, S., Nevin, E., Behan, A., Mageean, E., y Sheridan, S. (2014). Spatial skills as predictors of success in first-year engineering. 2014 IEEE Frontiers in Education Conference (FIE) Proceedings, 1-7.
  • Stieff, M., y Uttal, D. (2015). How Much Can Spatial Training Improve STEM Achievement? En Educational Psychology Review (Vol. 27, Número 4, pp. 607-615). Springer New York LLC. https://doi.org/10.1007/s10648-015-9304-8
  • Torner, J., Alpiste, F., y Brigos, M. (2015). Spatial Ability in Computer-Aided Design Courses. Computer-Aided Design and Applications, 12(1), 36-44. https://doi.org/10.1080/16864360.2014.949572
  • Tumkor, S., Aziz, E., Esche, S., y Chassapis, C. (2013). Integration of augmented reality into the CAD process. Proceedings of the ASEE Annual Conference y Exposition.
  • Veurink, N., Hamlin, A. J., y Sorby, S. (2013). Impact of Spatial Training on “ Non-rotators ”. 68th Mid-Year Conference, 1978, 15-22.
  • Wai, J., Lubinski, D., y Benbow, C. P. (2009). Spatial Ability for STEM Domains: Aligning Over 50 Years of Cumulative Psychological Knowledge Solidifies Its Importance. Journal of Educational Psychology, 101(4), 817-835. https://doi.org/10.1037/a0016127
  • Wigfield, A., Eccles, J. S., Schiefele, U., Roeser, R. W., y Davis-Kean, P. (2007). Development of Achievement Motivation. En Handbook of Child Psychology. John Wiley y Sons, Inc. https://doi.org/10.1002/9780470147658.chpsy0315
  • Zimmerman, B. J., y Martinez-Pons, M. (1990). Student differences in self-regulated learning: Relating grade, sex, and giftedness to self-efficacy and strategy use. Journal of Educational Psychology, 82(1), 51-59. https://doi.org/10.1037/0022-0663.82.1.51