Variation and oscillation operators on weighted Morrey–Campanato spaces in the Schrödinger setting

  1. Víctor Almeida 1
  2. Betancor, Jorge J. 1
  3. Fariña, Juan C. 1
  4. Lourdes Rodríguez-Mesa 1
  1. 1 Universidad de La Laguna, España
Revista:
Revista de la Unión Matemática Argentina

ISSN: 1669-9637 0041-6932

Año de publicación: 2023

Volumen: 66

Número: 1

Páginas: 1-34

Tipo: Artículo

DOI: 10.33044/REVUMA.4327 DIALNET GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: Revista de la Unión Matemática Argentina

Resumen

We denote by L the Schr¨odinger operator with potential V , that is, L = −∆ + V , where it is assumed that V satisfies a reverse H¨older inequality. We consider weighted Morrey–Campanato spaces BMOα L,w(Rd) and BLOα L,w(Rd) in the Schr¨odinger setting. We prove that the variation operator Vσ({Tt}t>0), σ > 2, and the oscillation operator O({Tt}t>0, {tj}j∈Z), where tj < tj+1, j ∈ Z, lim j→+∞tj = +∞ and lim j→−∞ tj = 0, being Tt = t k∂ k t e−tL, t > 0, with k ∈ N, are bounded operators from BMOα L,w(Rd) into BLOα L,w(Rd). We also establish the same property for the maximal operators defined by {t k∂ k t e−tL}t>0, k ∈ N.