Patterns of Endemism in Lichens: Another Paradigm-Shifting Example in the Lichen Genus Xanthoparmelia from Macaronesia

  1. Pérez-Vargas, Israel 2
  2. Tuero-Septién, Javier 2
  3. Rancel-Rodríguez, Nereida M. 2
  4. Pérez, José Antonio 3
  5. Blázquez, Miguel 1
  1. 1 Department of Mycology, Real Jardín Botánico (CSIC), 28014 Madrid, Madrid, Spain
  2. 2 Department of Botany, Ecology and Plant Physiology, Faculty of Pharmacy, University of La Laguna, Apdo Postal 456, 38200 La Laguna, Canary Islands, Spain
  3. 3 Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Área de Genética, Universidad de La Laguna, Apdo Postal 456, 38200 La Laguna, Canary Islands, Spain
Revista:
Journal of Fungi

ISSN: 2309-608X

Año de publicación: 2024

Volumen: 10

Número: 3

Páginas: 166

Tipo: Artículo

DOI: 10.3390/JOF10030166 GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: Journal of Fungi

Resumen

It has long been assumed that lichen-forming fungi have very large distribution ranges, and that endemic species are rare in this group of organisms. This is likely a consequence of the “everything small is everywhere” paradigm that has been traditionally applied to cryptogams. However, the description of numerous endemic species over the last decades, many of them in oceanic islands, is challenging this view. In this study, we provide another example, Xanthoparmelia ramosae, a species that is described here as new to science on the basis of morphological, chemical, and macroclimatic data, and three molecular markers (ITS rDNA, nuLSU rDNA, and mtSSU). The new species is endemic to the island of Gran Canaria but clusters into a clade composed exclusively of specimens collected in Eastern Africa, a disjunction that is here reported for the first time in lichen-forming fungi. Through the use of dating analysis, we have found that Xanthoparmelia ramosae diverged from its closely related African taxa in the Pliocene. This result, together with the reproductive strategy of the species, points to the Relict theory as a likely mechanism behind the disjunction, although the large gap in lichenological knowledge in Africa makes this possibility hard to explore any further.

Información de financiación

Financiadores

  • Cabildo de Gran Canaria

Referencias bibliográficas

  • Nash, T.H. (2008). Lichen Biology, Cambridge University Press.
  • Honegger, R. (2009). Plant Relationships, Springer.
  • Sanders, (2023), New Phytol., 241, pp. 969, 10.1111/nph.19321
  • Nash, T.H. (2008). Lichen Biology, Cambridge University Press. [2nd ed.].
  • Fontaneto, D. (2011). Biogeography of Microscopic Organisms: Is Everything Small Everywhere?, Cambridge University Press.
  • Cabezas, (2004), Science, 304, pp. 1144, 10.1126/science.1095210
  • Werth, (2006), Ecology, 87, pp. 2037, 10.1890/0012-9658(2006)87[2037:QDAELI]2.0.CO;2
  • Damialis, (2017), Sci. Rep., 7, pp. 44535, 10.1038/srep44535
  • Scheidegger, (2009), Fungal Biol. Rev., 23, pp. 55, 10.1016/j.fbr.2009.10.003
  • Golan, (2017), Microbiol. Spectr., 5, pp. 1, 10.1128/microbiolspec.FUNK-0047-2016
  • Fontaneto, D. (2011). Biogeography of Microscopic Organisms. Is Everything Small Everywhere?, Cambridge University Press.
  • Serusiaux, (2011), J. Biogeogr., 38, pp. 1138, 10.1111/j.1365-2699.2010.02469.x
  • Moncada, (2014), Bryol., 117, pp. 119, 10.1639/0007-2745-117.2.119
  • Sikaroodi, (2014), Proc. Natl. Acad. Sci. USA, 111, pp. 11091, 10.1073/pnas.1403517111
  • (2014), Phytotaxa, 159, pp. 269, 10.11646/phytotaxa.159.4.3
  • Simon, (2018), Mol. Phylogenet. Evol., 122, pp. 15, 10.1016/j.ympev.2018.01.012
  • Schultz, (2023), Mol. Phylogenet. Evol., 185, pp. 107829, 10.1016/j.ympev.2023.107829
  • Ertz, (2023), Lichenologist, 55, pp. 1, 10.1017/S0024282922000408
  • Jorna, (2021), Ecol. Evol., 11, pp. 18615, 10.1002/ece3.8467
  • Ortiz-Álvarez, R., de Los Ríos, A., Fernández-Mendoza, F., Torralba-Burrial, A., and Pérez-Ortega, S. (2015). Ecological specialization of two photobiont-specific maritime cyanolichen species of the genus Lichina. PLoS ONE, 10.
  • Otto, (2011), J. Biogeogr., 38, pp. 226, 10.1111/j.1365-2699.2010.02427.x
  • Juan, (2000), Trends Ecol. Evol., 15, pp. 104, 10.1016/S0169-5347(99)01776-0
  • Myers, (2000), Nature, 403, pp. 853, 10.1038/35002501
  • (2023, December 01). Conservation International 2023. Available online: https://www.cepf.net/node/1996.
  • Medail, (1997), Ann. Mo. Bot. Gard., 84, pp. 112, 10.2307/2399957
  • Medail, (1999), Conserv. Biol., 13, pp. 1510, 10.1046/j.1523-1739.1999.98467.x
  • Pérez-Vargas, I. A revised checklist of the lichen and lichenicolous fungi from the Canary Islands, In prep.
  • García-Romero, L., Carreira-Galbán, T., Rodríguez-Báez, J.A., Máyer-Suárez, P., Hernández-Calvento, L., and Yánes-Luque, A. (2023). Mapping environmental impacts on coastal tourist áreas of oceanic islands (Gran Canaria, Canary Islands): A current and future scenarios assessment. Remote Sens., 15.
  • Anadón Fernandez, I. (2021). Canarias. Los Valores Naturales de las Propiedades del Minsiterio de Defensa, Ministerio de Defensa, Secretaría General Técnica.
  • Pérez-Vargas, I. (2020). Servicio de Evaluación y Caracterización de la Biota Liquénica del Paisaje Protegido de La Isleta, Unpublished work.
  • Blanco, (2004), Taxon, 53, pp. 959, 10.2307/4135563
  • Jaklitsch, W.M., Baral, H.O., Lücking, R., and Lumbsch, H.T. (2016). Syllabus of Plant Families—Adolf Engler’s Syllabus Der Pflanzenfamilien, Borntraeger Verlagsbuchhandlung.
  • Hodkinson, (2017), Bryologist, 119, pp. 361, 10.1639/0007-2745-119.4.361
  • Leavitt, (2018), Lichenol., 50, pp. 299, 10.1017/S0024282918000233
  • Hale, (1990), Smithson. Contrib. Bot., 74, pp. 1, 10.5479/si.0081024X.74
  • Blanco, (2006), Mol. Phylogenet. Evol., 39, pp. 52, 10.1016/j.ympev.2005.12.015
  • Rizzi, (2013), Plant Biosyst., 147, pp. 33, 10.1080/11263504.2012.717546
  • Blanco, (2005), Lichenologist, 37, pp. 97, 10.1017/S0024282905014829
  • Crespo, (2010), Taxon, 59, pp. 1735, 10.1002/tax.596008
  • Matteucci, E., Occhipinti, A., Piervittori, R., Maffei, M., and Favero-Longo, S.E. (2016). Morpho-Chemical Variability of Xanthoparmelia (Vain.) Hale at the Local Scale: Unexpected Patterns and Edaphic Influence, International Association for Lichenology. IAL 8, Book of Abstracts.
  • Orange, A., James, P.W., and White, F.J. (2001). Microchemical Methods for the Identification of Lichens, British Lichen Society.
  • Elix, J.A., and Ernst-Russell, K.D. (1993). A Catalogue of Standardized Thin Layer Chromatographic Data and Biosynthetic Relationships for Lichen Substances, Australian National University, Department of Chemistry.
  • Gardes, (1993), Mol. Ecol., 2, pp. 113, 10.1111/j.1365-294X.1993.tb00005.x
  • Innis, M.A., Gelfand, D.H., Sninsky, J.J., and White, T.J. (1990). PCR Protocols: A Guide to Methods and Applications, Academic Press.
  • Mangold, (2008), Lichenologist, 40, pp. 39, 10.1017/S0024282908007366
  • Vilgalys, (1990), J. Bacteriol., 172, pp. 4239, 10.1128/jb.172.8.4238-4246.1990
  • Zoller, (1999), Lichenologist, 31, pp. 511, 10.1006/lich.1999.0220
  • Zhou, (2001), Mycol. Res., 105, pp. 1033, 10.1016/S0953-7562(08)61965-6
  • Leavitt, (2021), An. Del Jardín Botánico De Madr., 78, pp. e107, 10.3989/ajbm.2564
  • Katoh, (2002), Nucleic Acids Res., 30, pp. 3059, 10.1093/nar/gkf436
  • Huelsenbeck, (2001), Bioinformatics, 17, pp. 754, 10.1093/bioinformatics/17.8.754
  • Ronquist, (2003), Bioinformatics, 19, pp. 1572, 10.1093/bioinformatics/btg180
  • Stamatakis, (2014), Bioinformatics, 30, pp. 1312, 10.1093/bioinformatics/btu033
  • Miller, M.A., Pfeiffer, W., and Schwartz, T. (2011, January 18–21). The CIPRES science gateway: A community resource for phylogenetic analyses. Proceedings of the 2011 TeraGrid Conference: Extreme Digital Discovery TG ’11, Salt Lake City, UT, USA.
  • Suchard, (2018), Virus Evol., 4, pp. vey016, 10.1093/ve/vey016
  • Nguyen, (2015), Mol. Biol. Evol., 32, pp. 268, 10.1093/molbev/msu300
  • Trifinopoulos, (2016), Nucleic Acids Res., 44, pp. W232, 10.1093/nar/gkw256
  • Rambaut, (2018), Syst. Biol., 67, pp. 901, 10.1093/sysbio/syy032
  • Drummond, A.J., and Rambaut, A. (2007). BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol. Biol., 7.
  • Gaiji, (2013), Biodivers. Inform., 8, pp. 94
  • Linder, (2012), J. Biogeogr., 39, pp. 1189, 10.1111/j.1365-2699.2012.02728.x
  • Fick, (2017), Int. J. Climatol., 37, pp. 4302, 10.1002/joc.5086
  • Blázquez, M., Hernández-Moreno, L.S., Gasulla, F., Pérez-Vargas, I., and Pérez-Ortega, S. (2022). The Role of Photobionts as Drivers of Diversification in an Island Radiation of Lichen-Forming Fungi. Front. Microbiol., 12.
  • Hijmans, R.J., Van Etten, J., Cheng, J., Mattiuzzi, M., and Greenberg, J.A. (2015). Package ‘Raster’, R Foundation for Statistical Computing. R package 3.6.14.
  • R Core Team (2022). R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing.
  • Gunderson, (2018), Proc. R. Soc. B, 285, pp. 20172241, 10.1098/rspb.2017.2241
  • (2010), Biodivers. Conserv., 19, pp. 3089, 10.1007/s10531-010-9881-2
  • Elix, (1993), Bryologist, 96, pp. 359, 10.2307/3243867
  • Elix, (2002), Lichenologist, 34, pp. 283, 10.1006/lich.2002.0383
  • Elix, (2003), Mycotaxon, 86, pp. 383
  • Arechavaleta, M., Zurita, N., Marrero, M.C., and Martín, J.L. (2005). Lista Preliminar de Especies Silvestres de Cabo Verde (Hongos, Plantas y Animales Terrestres), Consejería de Medio Ambiente y Ordenación Territorial, Gobierno de Canarias.
  • Elix, (2007), Lichenologist, 38, pp. 445
  • Arechavaleta, M., Rodríguez, S., Zurita, N., García, A. (2009). Lista de Especies Silvestres de Canarias. Hongos, Plantas y Animales Terrestres, Gobierno de Canarias. Consejería de Medio Ambiente y Ordenación Territorial.
  • Leavitt, (2018), MycoKeys, 40, pp. 13, 10.3897/mycokeys.40.26724
  • Peksa, (2015), Phytotaxa, 219, pp. 118, 10.11646/phytotaxa.219.2.2
  • Barreno, E., Muggia, L., Chiva, S., Molins, A., Bordenave, C., García-Breijo, F., and Moya, P. (2022). Trebouxia lynnae sp. nov. (former Trebouxia sp. TR9): Biology and biogeography of an epitome lichen symbiotic microalga. Biology, 11.
  • Leliaert, (2012), Crit. Rev. Plant Sci., 31, pp. 1, 10.1080/07352689.2011.615705
  • Škaloud, P., Rindi, F., Boedeker, C., and Leliaert, F. (2018). Freshwater Flora of Central Europe, Vol 13: Chlorophyta: Ulvophyceae (Süßwasserflora von Mitteleuropa, Bd. 13: Chlorophyta: Ulvophyceae), Springer.
  • Muggia, (2020), Mol. Phylogenet. Evol., 149, pp. 106821, 10.1016/j.ympev.2020.106821
  • Muggia, (2011), Eur. J. Phycol., 46, pp. 399, 10.1080/09670262.2011.629788
  • Barber, (2002), Mol. Phylogenet. Evol., 23, pp. 293, 10.1016/S1055-7903(02)00018-0
  • Carine, (2004), Am. J. Bot., 91, pp. 1070, 10.3732/ajb.91.7.1070
  • Whittaker, R.J., and Fernández-Palacios, J.M. (2007). Island Biogeography: Ecology, Evolution, and Conservation, Oxford University Press. [2nd ed.].
  • Cronk, (1992), Biol. J. Linn. Soc., 46, pp. 91, 10.1111/j.1095-8312.1992.tb00852.x
  • Olmstead, (1997), Syst. Bot., 22, pp. 19, 10.2307/2419675
  • Mies, (1995), Bol. Mus. Mun. Funchal, 4, pp. 445
  • Kornhall, (2001), Plant Syst. Evol., 228, pp. 199, 10.1007/s006060170029
  • Bohs, (2001), Plant Syst. Evol., 228, pp. 33, 10.1007/s006060170035
  • Hjertson, (2003), Edinb. J. Bot., 60, pp. 131, 10.1017/S096042860300012X
  • Thiv, (2010), Mol. Phylogenet. Evol., 54, pp. 607, 10.1016/j.ympev.2009.10.009
  • Pokorny, (2015), Front. Genet., 6, pp. 1154, 10.3389/fgene.2015.00154
  • Mairal, (2017), J. Biogeogr., 44, pp. 911, 10.1111/jbi.12930
  • Mairal, (2005), Mol. Ecol., 24, pp. 1335, 10.1111/mec.13114
  • Mort, (2002), Syst. Bot., 27, pp. 271
  • (2005), Trends Ecol. Evol., 20, pp. 68, 10.1016/j.tree.2004.11.006
  • Valido, (2009), J. Biogeogr., 36, pp. 1270, 10.1111/j.1365-2699.2009.02091.x
  • Vargas, (2015), Perspect. Plant Ecol. Evol. Syst., 17, pp. 263, 10.1016/j.ppees.2015.05.002
  • Ferrer, (1989), Vegetatio, 84, pp. 117, 10.1007/BF00036512
  • Printzen, (2003), Mol. Ecol., 12, pp. 1473, 10.1046/j.1365-294X.2003.01812.x
  • Buschbom, (2007), Mol. Ecol., 16, pp. 1835, 10.1111/j.1365-294X.2007.03258.x
  • Wirtz, (2008), Mycol. Res., 112, pp. 472, 10.1016/j.mycres.2007.05.006
  • Geml, (2012), Fungal Biol., 116, pp. 388, 10.1016/j.funbio.2011.12.009
  • Leavitt, (2013), J. Biogeogr., 40, pp. 1792, 10.1111/jbi.12118
  • Bendiksby, (2014), J. Biogeogr., 41, pp. 2020, 10.1111/jbi.12347
  • de Paz, G.A., Cubas, P., Crespo, A., Elix, J.A., and Lumbsch, H.T. (2012). Transoceanic dispersal and subsequent diversification on separate continents shaped diversity of the Xanthoparmelia pulla group (Ascomycota). PLoS ONE, 7.
  • Niklasson, (2005), Biodivers. Conserv., 14, pp. 759, 10.1007/s10531-004-4535-x
  • Werth, (2017), New Phytol., 216, pp. 216, 10.1111/nph.14714
  • Tehler, (1980), Opera Bot., 70, pp. 1
  • Printzen, (2000), Mol. Phylogenetics Evol., 17, pp. 379, 10.1006/mpev.2000.0856
  • Papong, (2008), J. Biogeogr., 35, pp. 2311, 10.1111/j.1365-2699.2008.01972.x
  • Schuster, (2006), Science, 331, pp. 821, 10.1126/science.1120161
  • Pausata, (2020), One Earth, 2, pp. 235, 10.1016/j.oneear.2020.03.002